Организация пространства. Советы и идеи. Сад и участок

Технология производства аммиачной селитры. Технологическая схема производства NH4NO3 и ее описание

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Технологическая часть

1.4.1 Получение водного раствора аммиачной селитры концентрацией

Введение

В природе и в жизни человека азот имеет исключительно важное значение, он входит в состав белковых соединений, являющихся основой растительного и животного мира. Человек ежедневно потребляет 80-100 г. белка, что соответствует 12 - 17 г. азота.

Для нормального развития растений требуются многие химические элементы. Основными из них являются: углерод, кислород, азот, фосфор, магний, кальций, железо. Первые два элемента растения получают из воздуха и воды, остальные извлекают из почвы .

Особенно большая роль в минеральном питании растений принадлежат азоту, хотя его среднее содержание в растительной массе не превышает 1,5%. Без азота не может жить и нормально развиваться ни одно растение.

Азот является составной частью не только растительных белков, но и хлорофилла, с помощью которого растения под действием солнечной энергии усваивают углерод из находящегося в атмосфере диоксида углерода СО2 .

Природные соединения азота образуются в результате химических процессов разложения органических остатков при грозовых разрядах, а также биохимическим путем в результате деятельности в почве особых бактерий - азотобактера, непосредственно усваивающих азот из воздуха. Такой же способностью обладают клубеньковые бактерии, которые живут в корнях бобовых растений (горох, люцерна, бобы и др.).

Значительное количество азота, содержащегося в почве, ежегодно выносится с урожаем растительных культур, а часть теряется в результате вымывания азотосодержащих веществ грунтовыми и дождевыми водами. Поэтому для повышения урожайности сельскохозяйственных культур необходимо систематически пополнять запасы азота в почве путем внесения азотных удобрений. Под различные культуры в зависимости от характера почв, климатических и других условий требуется вносить различное количество азота.

В ассортименте азотных удобрений значительное место занимает аммиачная селитра. Производство которой в последние десятилетия увеличилось более чем на 30%.

Еще в начале ХХ столетия выдающийся ученый - агрохимик Прянишников Д.Н. назвал аммиачную селитру удобрением будущего. На Украине впервые в мире начали в огромных количествах применять аммиачную селитру в качестве удобрения под все технические культуры (хлопчатник, сахарную и кормовую свеклу, лен, кукурузу), а в последние годы и под овощные культуры. .

Аммиачная селитра имеет ряд преимуществ перед другими азотными удобрениями. Она содержит 34 - 34,5 % азота и в этом отношении уступает только карбамиду [(NH2)2CO], содержащему 46% азота. Аммиачная селитра NН4NО3 является универсальным азотным удобрением, так как одновременно содержит аммиачную группу NН4 и нитратную группу NО3 формы азота.

Весьма важно, что формы азота аммиачной селитры используется растениями в разное время. Аммонийный азот NН2, непосредственно участвует в синтезе белка, быстро усваивается растениями в период роста; нитратный азот NО3 усваивается относительно медленно, поэтому действует более продолжительное время.

Аммиачная селитра используется также в промышленности. Она входит в состав большой группы устойчивых в разных условиях аммиачно-селитренных взрывчатых веществ в качестве окислителя, разлагаясь в определенных условиях только на газообразные продукты. Таким взрывчатым веществом представляет собой смесь аммиачной селитры с тринитротолуолом и другими веществами. Аммиачная селитра обработанная гидрокарбонатной пленкой типа Fе(RСОО)3 RСООН, в больших количествах используется для взрывных работ в горнорудной промышленности, при строительстве дорог, гидротехнических и других крупных сооружениях.

Небольшое количество аммиачной селитры применяется для производства закиси азота, используемой в медицинской практике.

Наряду с увеличением объема производства аммиачной селитры путем строительства новых и модернизации действующих предприятий поставлена задача улучшить ее качество, т.е. получить готовый продукт со 100% рассыпчатостью. Это может быть достигнуто путем дальнейшего изыскания различных добавок, влияющих на процессы полимерных превращений, а также за счет использования доступных и дешевых ПАВ, обеспечивающих гидрофобизацию поверхности гранул и защищающих ее от воздействия атмосферной влаги - создание медленно действующей аммиачной селитры .

селитра производство гранула

1. Технологическая часть

1.1 Технико-экономическое обоснование, выбор места и точки строительства

Руководствуясь принципами рационального ведения хозяйства при выборе места строительства, учитываем близость сырьевой базы, топливо - энергетических ресурсов, близость потребителей выпускаемой продукции, наличие трудовых ресурсов, транспорта, равномерное размещение предприятий на территории страны. Исходя из приведенных принципов размещения предприятий, строительство проектируемого цеха гранулированной аммиачной селитры осуществляю в городе Ровно. Так как из сырья необходимого для производства аммиачной селитры, только природный газ используемый для производства синтетического аммиака, поставляется в город Ровно.

Источником водоснабжения служит бассейн реки Горынь. Энергия, потребляемая производством, вырабатывается Ровенской ТЭЦ. Кроме того, Ровно - крупный город с населением 270 тысяч человек, способный обеспечить проектируемый цех трудовыми ресурсами. Набор рабочей силы предусмотрено также производить из прилагаемых к городу районов. Инженерными кадрами цех обеспечивается выпускниками Львовского политехнического института, Днепропетровского политехнического института, Киевского политехнического института, рабочими кадрами цех будет обеспечен местными профессионально-техническими училищами.

Транспортировка готовой продукции потребителям будет производиться железнодорожным транспортом и автотранспортом.

О целесообразности строительства проектируемого цеха в городе Ровно свидетельствует и тот факт, что на территориях Ровенской, Волынской, Львовской областях с хорошо развитым сельским хозяйством являющимся основным потребителем продукции проектируемого цеха гранулированной аммиачной селитры, как минерального удобрения.

Следовательно, близость сырьевой базы, энергетических ресурсов, рынка сбыта, а также наличие рабочей силы, свидетельствует о целесообразности строительства проектируемого цеха в городе Ровно.

Близость крупной железнодорожной станции с большим разветвлением железнодорожных путей дает возможность дешево транспортировать

1.2 Выбор и обоснование способа производства

В промышленности широко применяется только метод получения аммиачной селитры из синтетического аммиака и разбавленной азотной кислоты.

Во многих производствах аммиачной селитры вместо ранее применяющихся, плохо работающих аппаратов, были внедрены специальные промыватели. В результате этого содержание в соковых парах аммиака или аммиачной селитры снизилось почти в три раза. Нейтрализаторы устаревших конструкций, имеющие низкую производительность (300 - 350 т/сутки), повышенные потери и недостаточный коэффициент использования тепла реакций были реконструированы. Большое количество маломощных горизонтальных выпарных аппаратов было заменено на вертикальные с падающей или сползающей пленкой, и на аппараты с большей теплообменной поверхностью, что позволило увеличить производительность выпарных стадий почти вдвое, уменьшить расход вторичного и свежего греющего пара в среднем на 20%.

В Украине и за рубежом твердо установлено, что только строительство агрегатов большой мощности, с использованием современных достижений науки и техники, может дать экономические преимущества по сравнению с действующими производствами аммиачной селитры.

Значительное количество аммиачной селитры на отдельных заводах производится из отходящих аммиакосодержащих газов систем карбамида с частичными жидкостными рециклами, где на одну тонну выпускаемого карбамида расходуется от 1 до 1,4 тонны аммиака. Из такого же количества аммиака модно выработать 4,5 - 6,4 тонны аммиачной селитры .

Способ получения аммиачной селитры из аммиакосодержащих газов отличается от способа ее получения из газообразного аммиака только на стадии нейтрализации.

В небольших количествах аммиачную селитру получают путем обменного разложения солей (конверсионные способы) по реакциям:

Са(NО3)2 + (NН4)2СО3 = 2NН4NО3 + vСаСО3 (1.1)

Мg(NО3)2 +(NН4)2СО3 = 2NН4NО3 + vМgСО3 (1.2)

Ва(NО3)2 +(NН4)2SО4 = 2NН4NО3 + vВаSО4 (1.3)

Эти способы получения аммиачной селитры основываются на выпадении одной из образующихся солей в осадок. Все способы получения аммиачной селитры обменным разложением солей сложны, связаны с большим расходом пара и потерей связанного азота. Их обычно применяют в промышленности только в случае необходимости утилизации соединений азота, получаемых как побочные продукты.

Несмотря на относительную простоту технологического процесса получения аммиачной селитры схемы ее производства за рубежом имеют существенные различия, отличающиеся друг от друга как по виду добавок и способу их приготовления, так и по способу гранулирования плава.

Способ «Нукло» (США).

Особенностью этого способа производства гранулированной аммиачной селитры является добавление к высококонцентрированном плаву (99,8% нитрата аммония перед его грануляцией в башне, около 2% специальной добавки, получившей название «Нукло». Она представляет собой тонкоизмельченный сухой порошок бетонированной глины с размером частиц не более 0,04 мм .

Способ «Нитро - ток».

Этот процесс разработан английской фирмой «Файзоне». Основное отличие этого способа от других состоит в том, что капли плава аммиачной селитры одновременно охлаждаются, гранулируются и опудриваются сначала в облаке пыли опудривающей добавки, а затем в псевдоожиженном слое этой же добавки .

Способ фирмы «Ай - Си - Ай» (Англия).

Этот способ получения аммиачной селитры отличается тем, что в качестве добавки, улучшающей физико-химические свойства готового продукта, применяется раствор нитрата магния, что позволяет получить продукт высокого качества из плава нитрата аммония, Содержащего до 0,7% воды .

Безупарочный способ производства аммиачной селитры был взят в 1951 году в США «Штенгелем патент» позже реализуемый в промышленности. Сущность способа заключается в том, что подогретая 59%-ная азотная кислота нейтрализуется подогретым газовым аммиаком в небольшом объеме под давлением 0,34 МПа.

Кроме описанных схем выше за рубежом имеется много других схем производства аммиачной селитры, однако они мало отличаются друг от друга.

Следует отметить, что в отличии от работающих и строящихся цехов в Украине и ближнем зарубежье, во всех зарубежных установках продукт после грануляционной башни проходит стадию рассева и опудривания, что способствует улучшению качества товарного продукта, но существенно усложняет технологическую схему. На отечественных установках отсутствие операции рассева продукта компенсируется более совершенной конструкцией грануляторов, дающих продукт с минимальным содержанием фракции менее 1 мм. Громоздкие вращающиеся барабаны для охлаждения гранул, широко использованные за рубежом, в Украине не применяются и заменены аппаратами для охлаждения в псевдоожиженном слое .

Производство гранулированной аммиачной селитры в цехе характеризуется: получением продукта высокого качества, высоким коэффициентом использования тепла нейтрализации, применение одноступенчатой выпарки с «сползающей пленкой», максимальным использованием отходов, путем возвращения их в процесс, высоким уровнем механизации, хранения и погрузки продукции. Это достаточно высокий уровень производства.

1.3 Характеристика сырья и готового продукта

Для производства аммиачной селитры применяется 100%-ный аммиак и разбавленная азотная кислота НNО3 концентрацией 55 - 56%.

Аммиак NН3 - бесцветный газ с резким специфическим запахом.

Реакционноспособное вещество, вступающее в реакции присоединения, замещения и окисления.

Хорошо растворим в воде.

Плотность по воздуху при температуре 0°С и давлении 0,1 МПа - 0,597.

Предельно допустимая концентрация в воздухе рабочей зоны производственных помещений 20 мг/м3, в воздухе населенных мест 0,2 мг/м3.

Из смеси с воздухом аммиак образует взрывоопасные смеси. Нижний предел взрываемости аммиачно-воздушной смеси 15% (объемная доля), верхний предел 28% (объемная доля).

Аммиак раздражающе действует на верхние дыхательные пути, слизистые оболочки носа и глаз, попадая на кожу человека вызывает ожоги.

Класс опасности IV.

Выпускается по ГОСТ 6621 - 70.

Азотная кислота НNО3 - жидкость обладающая едким запахом.

Плотность по воздуху при температуре 0°С и давлении 0,1МПа-1,45г/дм3.

Температура кипения 75°С.

Смешивается с водой во всех отношениях с выделением тепла.

Азотная кислота попадая на кожный покров или слизистые оболочки вызывает ожоги. Животные и растительные ткани под воздействием азотной кислоты разрушаются. Пары азотной кислоты, аналогично оксидам азота, вызывают раздражение внутренних дыхательных путей, одышку, отек легких.

Предельно допустимая концентрация паров азотной кислоты в воздухе производственных помещений в пересчете на NО2 - 2 мг/м3.

Массовая концентрация паров азотной кислоты в воздухе населенных мест не более 0,4 мг/м3.

Класс опасности II.

Выпускается по ОСТ 113 - 03 - 270 - 76.

Аммиачная селитра NН4NО3 - белое кристаллическое вещество выпускаемое в гранулированном виде с содержанием азота до 35%

Выпускается по ГОСТ 2 - 85 и отвечает следующим требованиям (см. таблицу 1.1)

Таблица 1.1 - Характеристика аммиачной селитры выпускаемой по ГОСТ 2 - 85

Наименование показателя

Норма для марки

Суммарная массовая доля нитратного и аммонийного азота в пересчете:

на NН4NО3 в сухом веществе, %, не менее

на азот в сухом веществе, %, не менее

Массовая доля воды, %, не более

рН 10% водного раствора, не менее

Массовая доля веществ не растворимых в 10% растворе азотной кислоты, %, не более

Гранулометрический состав

Массовая доля гранул размером:

от 1 до 3 мм, %, не менее

от 1 до 4 мм, %, не менее

В том числе:

гранул от 2 до 4 мм, %, не менее

гранул размерами менее 1 мм, %, не более

гранул размером более 5 мм, %

Статическая прочность гранул

Н/гранулу (кг/ гранулу), не менее

Рассыпчатость, %, не менее

Аммиачная селитра относится к взрывоопасным и огнеопасным веществам. Гранулы аммиачной селитры устойчивы к трению, ударам и толчкам, при воздействии детонаторов или в замкнутом пространстве аммиачная селитра взрывается. Взрывоопасность аммиачной селитры возрастает в присутствии кислот органических веществ, масел, опилок, древесного угля. Наиболее опасными металлическими примесями к аммиачной селитре являются кадмий и медь.

Взрывы аммиачной селитры могут быть вызваны:

а) воздействием детонаторов достаточной мощности;

б) влияние неорганических и органических примесей в частности мелкодисперсной меди, кадмия, цинка, порошкообразного древесного угля, масла;

в) термическим разложением в замкнутом пространстве.

Пыль аммиачной селитры с примесью органических веществ увеличивает взрывоопасность соли. Ткань пропитанная селитрой и нагретая до 100°С может вызвать пожар. Тушат селитру при загорании водой. В связи с тем, что при загорании аммиачной селитры образуются оксиды азота, то при тушении необходимо пользоваться противогазами.

NН4NО3 =N2О = 2Н2О = 3600 кДж (1.4)

NН4NО3 =0,5N2 + NО = 2Н2О = 28,7 кДж (1.5)

Наличие свободной кислотности в растворе увеличивает способность к химическому и термическому разложению.

Отрицательным свойством аммиачной селитры является ее способность слеживаться - терять при хранении свою сыпучесть.

Факторы способствующие слеживаемости:

б) неоднородность и низкая механическая прочность гранул. При складировании в штабеля высотой 2,5 метра, под давлением верхних мешков происходит разрушение наименее прочных гранул с образованием пылевых частиц;

в) изменение кристаллических модификаций;

г) гигроскопичность способствует слеживаемости. Наиболее эффективным средством предотвращения слеживаемости, является упаковка ее в герметичную тару (полиэтиленовые мешки).

Предельно допустимая концентрация аммиачной селитры в виде пыли в производственных помещений не более 10 мг/м3.

Средства защиты органов дыхания - раствор.

Аммиачная селитра употребляется в сельском хозяйстве в качестве азотного удобрения, а также в промышленности для различных технических целей .

Гранулированная аммиачная селитра используется как сырье в больших количествах на предприятиях военной промышленности вырабатывающих взрывчатые вещества и их полуфабрикаты.

1.4 Физико-химические основы технологического процесса

Процесс получения гранулированной аммиачной селитры включает в себя следующие стадии:

получение водного раствора аммиачной селитры концентрацией не менее 80% при нейтрализации азотной кислоты газообразным аммиаком;

выпаривание 80% раствора аммиачной селитры до состояния плава;

упаривание слабых растворов аммиачной селитры с узлов растворения и систем улавливания;

гранулирование соли из плава;

охлаждение гранул в «кипящем слое» воздухом;

обработка гранул жирными кислотами;

транспортировка, упаковка, и хранение.

1.4.1 Получение водного раствора аммиачной селитры концентрацией не менее 80% при нейтрализации азотной кислоты газообразным аммиаком

Раствор аммиачной селитры получают в нейтрализаторах, позволяющих использовать тепло реакции для частичного выпаривания раствора. Он получил наименование аппарата ИТН (использование тепла нейтрализации).

Реакция нейтрализации протекает с большей скоростью и сопровождается выделением большого количества тепла.

NН3 = НNО3 = NН4NО3 = 107,7 кДж/моль (1.6)

Тепловой эффект реакции зависит от концентрации и температуры азотной кислоты и газообразного аммиака.

Рисунок 1.1 - Теплота нейтрализации азотной кислоты газообразным аммиаком (при 0,1 МПа и 20°)

Процесс нейтрализации в аппарате ИТН осуществляется под давлением 0,02 МПа, температура поддерживается не более 140°С Этими условиями обеспечивается получение достаточно концентрированного раствора с минимальным уносом аммиака, азотной кислоты и аммиачной селитры с соковым паром, образующего в результате испарения воды из раствора. Нейтрализация ведется в слабокислотной среде, так как потери аммиака, азотной кислоты и селитры с соковым паром меньше, чем в слабощелочной среде .

За счет разности удельных весов растворов в испарительной и нейтрализационной частях аппарата ИТН происходит постоянная циркуляция раствора. Более плотный раствор из отверстия нейтрализационной камеры непрерывно поступает в нейтрализационную часть. Наличие циркуляции раствора способствует лучшему перемешиванию реагентов в нейтрализационной части, повышению производительности аппарата и исключает перегрев раствора в зоне нейтрализации. При повышении температуры в реакционной части до 145°С срабатывает блокировка с прекращением подачи аммиака и азотной кислоты и подачей кислого конденсата.

1.4.2 Выпаривание 80% раствора аммиачной селитры до состояния плава

Выпаривание 80 - 86% раствора аммиачной селитры производится в выпарных аппаратах за счет тепла конденсации насыщенного пара давлением 1,2 МПа и температурой 190°С. пар подается в верхнюю часть межтрубного пространства выпарного аппарата. Выпарной аппарат работает под вакуумом 5,0ч6,4 104 Па по принципу «сползания» пленки раствора по стенкам вертикальных труб.

В верхней части аппарата расположен сепаратор, который служит для отделения плава аммиачной селитры от сокового пара.

Для получения аммиачной селитры высокого качества плав аммиачной селитры должен иметь концентрацию не менее 99,4% и температуру 175 - 785°С.

1.4.3 Упаривание слабых растворов аммиачной селитры с узлов растворения и систем улавливания

Упаривание слабых растворов и растворов полученных в результате пуска и остановки цеха происходит по отдельной системе.

Слабые растворы полученные на узлах растворения и улавливания через регулирующий клапан подаются в нижнюю часть аппарата упаривающего только слабые растворы. Упаривание слабых растворов аммиачной селитры производится в выпарном аппарате «пленочного типа», работающего по принципу «сползания» пленки внутри вертикальных труб. Парожидкостная эмульсия, образующая в трубчатке выпарного аппарата, поступает в сепаратор - промыватель, где происходит разделение сокового пара и раствора аммиачной селитры. Соковый пар проходит ситчатые тарелки промывателя выпарного аппарата, где происходит улавливание брызг аммиачной селитры и затем направляется в поверхностный конденсатор .

Теплоносителем является пар вторичного вскипания поступающий с расширителя пара с давлением (0,02 - 0,03) МПа и температурой 109 - 112°С, подаваемый в верхнюю межтрубную часть выпарного аппарата. Вакуум в выпарном аппарате поддерживается 200 - 300 мм рт. ст. С нижней тарелки слабый раствор концентрацией около 60% и температурой 105 - 112°С выводится в сборник - донейтрализатор.

1.4.4 Гранулирование соли из плава

Для получения аммиачной селитры в гранулированном виде кристаллизацию ее из плава концентрацией не менее 99,4% проводят в башнях представляющих собой железобетонное сооружение, цилиндрической формы диаметром 10,5 метров. Плав с температурой 175 - 180°С и концентрацией не менее 99,4% аммиачной селитры поступает в динамический гранулятор вращающийся со скоростью 200 - 220 об/мин, имеющего отверстия диаметром 1,2 - 1,3 мм. Распыленный через отверстия плав, за время падения с высоты 40 метров, формируется в шарикообразные частицы.

Воздух для охлаждения гранул движется противотоком снизу вверх. Для создания тяги воздуха устанавливается четыре осевых вентилятора производительностью 100000 нм3/час каждый. В грануляционной башне гранулы слегка подсушиваются. Их влажность на 0,15 - 0,2% меньше влажности поступающего плава.

Это объясняется тем, что даже при 100%-ной относительной влажности поступающего в башню воздуха, давление водяного пара над горячими гранулами больше парциального давления влаги в воздухе.

1.4.5 Охлаждение гранул в «кипящем слое» воздухом

Гранулы аммиачной селитры с конусов гранбашни поступают на охлаждение в аппарат с «кипящим слоем». Охлаждение гранул от температуры 100-110°С до температуры 50°С происходит в аппарате, который расположен непосредственно под гранбашней. На перфорированной решетки установлен переточный патрубок для регулирования высоты «кипящего слоя» и равномерной выгрузки селитры. Под перфорированную решетку подается воздух до 150000 нм3/час, который охлаждает аммиачную селитру и частично подсушивает. Влажность гранул аммиачной селитры уменьшается на 0,05 - 0,1% по сравнению с гранулами поступающими с конусов.

1.4.6 Обработка гранул жирными кислотами

Обработка гранул жирными кислотами производится с целью предотвращения слеживаемости аммиачной селитры в процессе длительного хранения или транспортировки навалом.

Процесс обработки заключается в том, что тонко распыленные форсунками жирные кислоты наносятся на поверхность гранул из расчета 0,01 - 0,03%. Конструкция форсунок обеспечивает создание эллипсовидного сечения факела раствора. Конструкция крепления форсунок обеспечивает возможность перемещения и фиксирования их в различном положении. Обработка гранул жирными кислотами осуществляется в местах пересыпки гранул с транспортных лент на транспортные ленты.

1.4.7 Транспортировка, упаковка, и хранение

Гранулированная аммиачная селитра с кипящего слоя поступает по транспортерам на пересыпку №1, обрабатывается жирными кислотами и по транспортерам второго и третьего подъема подается в навесные бункера, откуда поступает в автоматические весы, отвешивающие порции по 50 кг и далее в упаковочный агрегат. С помощью упаковочной машины аммиачная селитра упаковывается в полиэтиленовые клапанные мешки и сбрасывается на транспортеры которые фасованную продукцию направляют на погрузочные машины для погрузки в вагоны и автомашины. Хранение готовой продукции в складах предусмотрено при отсутствии вагонов или автотранспорта.

Складированная аммиачная селитра в штабели должна защищаться от влаги и разных перепадов температур. Высота штабелей не должна превышать 2,5 метра, так как под давлением верхних мешков может произойти разрушение наименее прочных гранул в нижних мешках с образованием пылевых частиц. Скорость поглощения аммиачной селитрой влаги из воздуха с повышением температуры резко увеличивается. Так при 40°С скорость поглощения влаги в 2,6 раза больше чем при 23°С.

На складах запрещено хранить совместно с аммиачной селитрой: масло, опилки, древесный уголь, металлические примеси порошков кадмия и меди, цинка, соединения хрома, алюминия, свинца, никеля, сурьмы, висмута.

Хранение пустой мешкотары находится врозь с хранящейся затаренной аммиачной селитры согласно требований пожарной безопасности и техники безопасности.

1.5 Охрана водного и воздушного бассейнов. Отходы производства и их утилизация

В условиях бурного развития производств минеральных удобрений, широкой химизации народного хозяйства, все более актуальным становятся проблемы защиты окружающей среды от загрязнения и охраны здоровья трудящихся.

Ровенский химический завод следуя примерам других крупных химических производств, добился того, что химически грязные стоки не сбрасываются, как раньше в реку, а очищаются в специальных сооружениях цеха биохимочистки и возвращаются в систему оборотного водоснабжения для дальнейшего использования.

Введен в действие ряд целенаправленных и локальных сооружений, предназначенных для очистки сточных вод, сжигания кубовых остатков и утилизации твердых отходов. Общий объем капитального вложенных вложений на эти цели превышает 25 млрд. гривен.

Цех биохочистки занесен в книгу славы Государственного комитета Совета Министров Украины по охране природы за успехи. Очистные сооружения предприятия разместились на площади в 40 гектаров. В прудах которые заполнены очищенной водой резвятся карпы, толстолобики, нежные аквариумные рыбки. Они индикатор качества очистки и лучшее доказательство безвредности сточных вод.

Лабораторные анализы показывают, что вода в буферных прудах не хуже взятой из реки. С помощью насосов она снова поступает на нужды производства. Цех биохимочистки доведен до мощности по очистке химикатов до 90 тысяч кубометров в сутки.

На заводе постоянно совершенствуется служба контроля за содержанием вредных веществ в сточных водах, почве, в воздухе производственных помещений, на территории предприятия и окресностях населенных пунктов и города. Более 10 лет активно действует санитарный контроль, осуществляющий работу промышленно-санитарной лаборатории. Днем и ночью они внимательно следят за санитарно-гигиеническим состоянием внешней и производственной среды, за условиями труда.

Отходами производства гранулированной аммиачной селитры являются: паровой конденсат в количестве 0,5 м3 на тонну продукта, который выводится в общезаводскую сеть; конденсат сокового пара в количестве 0,7 м3 на тонну продукта. В конденсате сокового пара содержится:

аммиака NН3 - не более 0,29 г/дм3;

азотной кислоты НNО3 - не более 1,1 г/дм3;

аммиачной селитры NН4NО3 - не более 2,17 г/дм3.

Конденсат сокового пара направляется в цех азотной кислоты для орошения колонн в отделении очистки.

Выбросы из трубы осевых вентиляторов в атмосферу:

массовая концентрация аммиачной селитры NН4NО3-не более 110 м2/м3

суммарный объем отходящих газов - не более 800 м3/час.

Выбросы из общецеховой трубы:

массовая концентрация аммиака NН3 - не более 150 м2/м3

массовая концентрация аммиачной селитры NН4NО3-не более 120 м2/м3

Меры обеспечивающие надежность охраны водных ресурсов и воздушного бассейна. В случае аварийной ситуации и остановок на ремонт, для исключения загрязнений водооборотного цикла аммиаком, азотной кислотой и аммиачной селитрой, а также для предотвращения попадания вредных веществ в почву предусмотрен слив раствора из отделения абсорбции и выпарки в три дренажные емкости объемом V = 3 м3 каждая, кроме того в эти же емкости собираются утечки с уплотнений циркуляционных насосов отделений абсорбции и выпарки. Из этих емкостей раствор откачивается в сборник слабых растворов поз. 13 откуда затем поступает в отделение выпарки слабых растворов.

Для предотвращения попадания вредных веществ в почву при появлении пропусков на оборудовании и коммуникациях оборудован поддон из кислотоупорного материала .

На грануляционной башне очистка осуществляется путем промывки загрязненного воздуха слабым раствором аммиачной селитры и дальнейшей фильтрацией паровоздушного потока. В отделении расфасовки аммиачной селитры имеется установка очистки воздуха от пыли аммиачной селитры после упаковочных полуавтоматов и транспортеров. Очистка осуществляется в циклоне типа ЦН - 15.

1.6 Описание технологической схемы производства с элементами новой техники, технологии и аппаратурного оформления

Азотная кислота и аммиак подаются в нейтрализационную камеру аппарата ИТН противотоком. Азотная кислота концентрацией не менее 55% из цеха азотной кислоты поступает по двум трубопроводам диаметром 150 и 200 мм в напорный бак (поз. 1) имеющий перелив, через который возвращается избыток кислоты из напорного бака на склад азотной кислоты. Из бака (поз. 1) азотная кислота по коллектору направляется в аппарат ИТН (поз. 5). Аппарат ИТН представляет собой вертикальный цилиндрический аппарат диаметром 2612 мм и высотой 6785 мм в котором помещен стакан диаметром 1100 мм и высотой 5400 мм (нейтрализационная камера). В нижней части нейтрализационной камеры имеется восемь прямоугольных отверстий (окон) размером 360х170 мм, соединяющих нейтрализационную камеру с испарительной частью аппарата ИТН (кольцевое пространство между стенками аппарата и стенкой нейтрализационной камеры). Количество азотной кислоты поступающей в аппарат ИТН (поз. 5) регулируется автоматически системой рН метр в зависимости от количества газообразного аммиака, поступающего в аппарат ИТН (поз. 5) с коррекцией по кислотности.

Газообразный аммиак NН3 с давлением не выше 0,5 МПа из заводской сети через регулирующий клапан после дросселяции до 0,15 - 0,25 МПа поступает в отделитель испаритель капель жидкого аммиака поз. 2, где отделяется также от масла с целью предотвращения попадания их в аппарат ИТН (поз. 5). Затем газообразный аммиак подогревается до температуры не ниже 70°С в подогревателе аммиака (поз. 4), где в качестве теплоносителя используется паровой конденсат из расширителя пара (поз. 33). Подогретый газообразный аммиак из (поз. 3) через регулирующий клапан по трубопроводам поступает в аппарат ИТН (поз. 5). Газообразный аммиак NН3 вводится в аппарат ИТН (поз. 5) по трем трубопроводам, два после регулирующего клапана параллельными потоками заходят в нейтрализационную камеру аппарата ИТН, где объединяются в один и заканчиваются барбатером. По третьему трубопроводу аммиак подается через барбатер вниз гидрозатвора в количестве до 100 нм3/час для поддержания нейтральной среды на выходе из аппарата ИТН. В результате реакции нейтрализации образуется раствор аммиачной селитры и соковый пар.

NН3 + НNО3 = NН4NО3 + 107,7 кДж/моль (1.6)

Раствор переливается через верхнюю часть нейтрализационной камеры в испарительную часть аппарата, где упаривается до концентрации 80 - 86%, за счет тепла реакции нейтрализации, а пар, смешиваясь с соковым паром полученным в испарительной части выводится из аппарата с температурой 140°С в промыватель (поз. 12), предназначенный для промывки сокового пара от брызг раствора аммиачной селитры и аммиака. Промыватель (поз. 12) представляет собой цилиндрический вертикальный аппарат, внутри которого расположены три ситчатые тарелки над которыми установлены брызгоотбойники. На двух вертикальных тарелках установлены змеевики, через которые проходит охлажденная промывная вода. Соковый пар проходит через ситчатые тарелки барботируя через слой раствора образовавшегося на тарелках в результате охлаждения. Слабый раствор аммиачной селитры стекает с тарелок в нижнюю часть, откуда выводится в бак слабых растворов (поз. 13).

Несконденсировавшийся промытый соковый пар поступает в поверхностный конденсатор (поз 15) в межтрубное пространство. В трубное пространство конденсатора (поз. 15) подается промышленная вода, отводящая тепло конденсации.

Конденсат (поз. 15) самотеком стекает в сборник кислого конденсата (поз. 16), а инертные газы через свечу сбрасываются в атмосферу.

Раствор аммиачной селитры из испарительной части через гидрозатвор поступает в сепаратор - расширитель (поз. 6) для выделения из него сокового пара и выводится в сборник - донейтрализатор (поз. 7), для нейтрализации избыточной кислотности (4 г/л). В сборник - донейтрализатор (поз. 7) предусмотрена подача газообразного аммиака. Из сборников - донейтрализаторов (поз. 7) и поз. 8) раствор аммиачной селитры концентрацией 80 - 88% (среда щелочная не более 0,2 г/л) и температурой не более 140°С насосами поз. 9 подается в отделение грануляции в напорный бак (поз. 11).

В качестве буферной емкости установлены два дополнительных сборника - донейтрализатора (поз. 8) для обеспечения ритмичной работы цеха и насосов (поз. 9), а также установлен насос (поз. 10). Насос (поз. 10) подключен таким образом, что им можно подавать раствор из сборника - донейтрализатора (поз. 7) в сборник - донейтрализатор (поз. 8) и наоборот.

Конденсат сокового пара со сборников кислого конденсата (поз. 16) откачивается в сборник (поз. 18) откуда насосами (поз, 19) откачивается в цех азотной кислоты на орошение.

Пар поступает в цех с давлением 2 МПа и температурой 300°С, проходит через диафрагму и регулирующий клапан, редуцируется до 1,2 МПа и поступает пароувлажнитель (поз. 32) в нижнюю часть аппарата, внутри которого имеется две ситчатые тарелки, а в верхней части установлено отбойное устройство - волнистая насадка. Здесь пар увлажняется и с температурой 190°С и давлением 1,2 МПа поступает в выпарной аппарат (поз. 20). Паровой конденсат из (поз. 32) в виде парожидкостной эмульсии с давлением 1,2 МПа и температурой 190°С через регулирующий клапан поступает в расширитель пара (поз. 3), где за счет снижения давления до 0,12 - 0,13 МПа образуется пар вторичного вскипания с температурой 109 - 113°С используемый для обогрева выпарного аппарата слабых растворов селитры (поз. 22). Паровой конденсат с нижней части расширителя пара (поз. 33) самотеком поступает на обогрев подогревателя аммиака (поз. 4) в межтрубное пространство, откуда после отдачи тепла с температурой 50°С поступает в сборник парового конденсата (поз. 34), откуда насосами (поз. 35) через регулирующий клапан выдается в заводскую сеть.

Напорный бак (поз. 11) имеет переливную трубу в (поз. 7). Напорные и переливная трубы проложены с пароспутниками и изолированы. Из напорного бака (поз. 11) раствор аммиачной селитры поступает в нижнюю трубную часть выпарного аппарата (поз. 20), где происходит упаривание раствора за счет тепла конденсации насыщенного пара давлением 1,2 МПа и температурой 190°С, подаваемого в верхнюю часть межтрубного пространства. Выпарной аппарат (поз. 20) работает под вакуумом 450 - 500 мм рт. ст. по принципу «Сползания» пленки раствора по стенкам вертикальных труб. В верхней части выпарного аппарата расположен сепаратор, который служит для отделения плава аммиачной селитры от сокового пара. Плав из (поз. 20) выводится в гидрозатвор - донейтрализатор (поз. 24), куда подается газообразный аммиак для нейтрализации избыточной кислотности. В случае прекращения отбора перелив направляется в (поз. 7). Соковый пар из выпарного аппарата (поз. 20) поступает в промыватель образующимся конденсатом сокового пара от брызг аммиачной селитры. Внутри промывателя расположены ситчатые тарелки. На верхних двух тарелках уложены змеевики с охлаждающей водой, на которых происходит конденсация пара. В результате промывки образуется слабый раствор аммиачной селитры, который направляется через гидрозатвор (поз. 27) в напорный бак (поз. 28) отделения нейтрализации. Соковый пар после промывателя (поз. 26) направляется на конденсацию в поверхностный конденсатор (поз. 29) в межтрубное пространство, а охлаждающая вода в трубное пространство. Образующийся конденсат самотеком направляется в сборник кислого раствора (поз. 30). Инертные газы отсасываются вакуум-насосами (поз. 37).

Плав аммиачной селитры из гидразатвора - донейтрализатора (поз. 24) с концентрацией 99,5% NН4NО3 и температурой 170 - 180°С с избытком аммиака не более 0,2 г/л подается насосами (поз. 25) в напорный бак (поз. 38) откуда самотеком поступает в динамические грануляторы (поз. 39) через которые распыляясь по грануляционной башне (поз. 40)за время падения формулируется в частицы круглой формы. Грануляционная башня (поз. 40) представляет собой железобетонное сооружение цилиндрической формы диаметром 10,5 м и высотой полой части 40,5 метров. Снизу грануляционной башни подается воздух вентиляторами (поз. 45), протягивается осевыми вентиляторами (поз. 44). Большая часть воздуха засасывается через окна и зазоры конусов гранбашни. Падая по стволу гранулы аммиачной селитры охлаждаются до 100 - 110°С и с конусов гранбашни поступают на охлаждение в аппарат с «кипящим слоем» (поз. 41) который расположен непосредственно под гранбашней. В местах промывания течки к перворированной решетки устроены передвижные перегородки позволяющие регулировать высоту «кипящего слоя» на серке.

При чистке башни и аппарата «КС» от аммиачной селитры и пылевых налипаний собранную массу сбрасывают в растворитель (поз. 46), куда подается пар давлением 1,2 МПа и температурой 190°С для растворения. Полученный раствор аммиачной селитры сливается с (поз. 46) в сборник (поз. 47) и насосами (поз. 48) откачивается в сборник слабых растворов (поз. 13). В этот же сборник поступает и слабый раствор аммиачной селитры после промывателя (поз. 12).

Слабые растворы NН4NО3 собранные в (поз. 13) насосами (поз. 14) направляются в напорный бак (поз. 28) откуда самотеком через регулирующий клапан подаются в нижнюю часть выпарного аппарата слабых растворов(поз. 22).

Выпарной аппарат работает по принципу «сползания» пленки внутри вертикальных труб. Соковый пар проходит ситчатые тарелки промывателя выпарного аппарата, где происходит упаривание брызг аммиачной селитры и направляется в поверхностный конденсатор (поз. 23), где конденсируется и самотеком поступает в (поз. 30). А инертные газы пройдя ловушку (поз. 36) отсасываются вакуум-насосом (поз. 37) Вакуум поддерживается 200 - 300 мм. рт. столба. С нижней тарелки выпарного аппарата (поз. 22) раствор аммиачной селитры с концентрацией около 60% и температурой 105 - 112°С выводится в сборник (поз. 8). Теплоносителем является пар вторичного выпаривания поступающий с расширителя(поз. 33) с температурой 109 - 113°С и давлением 0,12 - 0,13 МПа. Пар подается в верхнюю межтрубную часть выпарного аппарата, конденсат выводится в сборник парового конденсата (поз. 42).

Гранулированная аммиачная селитра из грануляционной башни (поз. 40) транспортерами (поз. 49) подается на узел пересыпки, где происходит обработка гранул жирными кислотами. Жирные кислоты насосами (поз. 58) из железнодорожных цистерн перекачиваются в сборник (поз. 59). Который снабжен змеевиком с поверхностью обогрева 6,4 м2. Перемешивание осуществляется насосами (поз. 60) и этими же насосами жирные кислоты подаются на форсунки узла дозирования, через которые распыляются сжатым воздухом давлением до 0,5 МПа и температурой не ниже 200°С. Конструкция форсунок обеспечивает создание эллипсовидного сечения факела раствора. Обработанная гранулированная аммиачная селитра пересыпается на транспортеры (поз. 50) второго подъема с которых ведется сброс аммиачной селитры в бункера (поз. 54) в случаях бестарной погрузки. С транспортеров (поз. 50) аммиачная селитра поступает на транспортеры (поз. 51) откуда сбрасывается в навесные бункера (поз. 52). После навесных бункеров амселитра поступает в автоматические весы (поз. 53) отвешивающие порции по 50 килограмм и далее в упаковочный агрегат. С помощью упаковочной машины аммиачная селитра упаковывается в клапанные полиэтиленовые мешки и сбрасывается реверсивные транспортеры (поз. 55), откуда поступает на складские транспортеры (поз. 56), а с них на погрузочные машины (поз. 57). С погрузочных машин (поз. 57) аммиачная селитра загружается в вагоны или автотранспорт. Хранение готовой продукции в складах предусмотрено при отсутствии железнодорожного транспорта и автотранспорта.

Готовый продукт - гранулированная аммиачная селитра должен соответствовать требованию государственного стандарта ГОСТ 2 - 85.

Проектом предусмотрен сбор просыпей аммиачной селитры после упаковочных машин. Установлен дополнительно транспортер (поз. 62) и элеватор (поз. 63). Аммиачная селитра просыпанная во время затарки в мешки через склизи ссыпается по текам на транспортер (поз. 62), откуда поступает на элеватор (поз. 63). С элеватора аммиачная селитра поступает в навесные бункера (поз. 52) где смешивается с основным потоком выработанной аммиачной селитры.

1.7 Материальные расчеты производства

Материальные расчеты производства рассчитываем на 1 тонну готовой продукции - гранулированной аммиачной селитры.

Материальный растет нейтрализации

Исходные данные:

Потери аммиака и азотной кислоты на одну тонну аммиачной селитры определяется исходя из уравнения реакции нейтрализации.

Процесс проводится в аппарате ИТН с естественной циркуляцией раствора аммиачной селитры.

Для получения одной тонны соли по реакции

NН3 + НNО3 = NН4NО3 + 107,7 кДж/моль

Расходуется 100% НNО3

Расходуется 100% NН3

где: 17, 63, 80 молекулярные массы аммиака, азотной кислоты и аммиачной селитры.

Практический расход NН3 и НNО3 будет несколько выше теоретического, так как в процессе нейтрализации неизбежны потери реагентов с соковым паром, через неплотности коммуникаций, вследствие набольшего разложения реагирующих компонентов. Практический расход реагентов с учетом потерь в производстве составит:

787,5 1,01 = 795,4 кг

Расходуется 55% НNО3 составит:

Потери кислоты составят:

795,4 - 787,5 = 7,9 кг

Расход 100% NН3

212,4 1,01 = 214,6 кг

Потери аммиака составят:

214,6 - 212,5 = 2,1 кг

В 1446,2 кг 55% НNО3 содержится воды:

1446,2 - 795,4 = 650,8 кг

Общее количество поступающих реагентов аммиака и кислоты в нейтрализатор составит:

1446,2 + 214,6 = 1660,8?1661 кг

В аппарате ИТН происходит испарение воды за счет тепла нейтрализации, и концентрация получаемого раствора аммиачной селитры достигает 80%, поэтому из нейтрализатора выйдет раствора аммиачной селитры:

В этом растворе содержится воды:

1250 - 1000 = 250 кг

При этом испаряется воды в процессе нейтрализации

650,8 - 250 = 400,8 ? 401 кг

Таблица 1.2 - Материальный баланс нейтрализации

Материальный расчет отделения выпарки

Исходные данные:

Давление пара - 1,2 МПа

Размещено на Allbest.ru

Подобные документы

    Физико-химические свойства аммиачной селитры. Основные стадии производства аммиачной селитры из аммиака и азотной кислоты. Установки нейтрализации, работающие при атмосферном давлении и работающие при разрежении. Утилизация и обезвреживание отходов.

    курсовая работа , добавлен 31.03.2014

    Характеристика выпускаемой продукции, исходного сырья и материалов для производства. Технологический процесс получения аммиачной селитры. Нейтрализация азотной кислоты газообразным аммиаком и выпаривание до состояния высококонцентрированного плава.

    курсовая работа , добавлен 19.01.2016

    Автоматизация производства гранулированной аммиачной селитры. Контуры стабилизации давления в линии подачи сокового пара и регулирования температуры конденсата пара из барометрического конденсатора. Контроль давления в линии отвода к вакуум-насосу.

    курсовая работа , добавлен 09.01.2014

    Аммиачная селитра как распространённое и дешёвое азотное удобрение. Обзор существующих технологических схем его производства. Модернизация производства аммиачной селитры с получением сложного азотно-фосфатного удобрения на ОАО "Череповецкий "Азот".

    дипломная работа , добавлен 22.02.2012

    Свойства этилен-пропиленовых каучуков, особенности их синтеза. Технология получения, физико-химические основы процесса, катализаторы. Характеристика сырья и готовой продукции. Материальный и энергетический баланс реакционного узла, контроль производства.

    курсовая работа , добавлен 24.10.2011

    Расчеты производственной рецептуры и технологического процесса для производства хлеба домашнего округлой формы: производственной рецептуры, мощность печи, выход изделия. Расчет оборудования для хранения и подготовки сырья, для запасов и готовой продукции.

    курсовая работа , добавлен 09.02.2009

    Основные стадии процесса получения каучука и приготовления катализатора. Характеристика сырья и готовой продукции по пластичности и вязкости. Описание технологической схемы производства и его материальный расчет. Физико-химические методы анализа.

    курсовая работа , добавлен 28.11.2010

    Характеристика ассортимента продукции. Физико-химические и органолептические показатели сырья. Рецептура сыра плавленого колбасного копчёного. Технологические процесс производства. Технохимический и микробиологический контроль сырья и готовой продукции.

    курсовая работа , добавлен 25.11.2014

    Характеристика исходного сырья, вспомогательных материалов и готовой продукции. Описание технологического процесса и его основные параметры. Материальные и энергетические расчеты. Техническая характеристика основного технологического оборудования.

    курсовая работа , добавлен 05.04.2009

    Характеристика перерабатываемого сырья и готовой продукции. Схема технологического процесса производства солода: приёмка, первичная очистка и хранение ячменя, ращение и сушка солода. Устройство и принцип действия линии производства ячменного солода.


Министерство образование и науки РФ

Государственное образовательное учреждение

Высшего профессионального образования

«Тверской государственный технический университет»

Кафедра ТПМ

Курсовая работа

по дисциплине: «Общая химическая технология»

Производство аммиачной селитры

  • Содержание

Введение

1. Физико-химические свойства аммиачной селитры

2. Методы производства

3. Основные стадии производства аммиачной селитры из аммиака и азотной кислоты

3.1 Получение растворов аммиачной селитры

3.1.1 Основы процесса нейтрализации

3.1.2 Характеристика нейтрализационных установок

3. 1 5 Основное оборудование

4. Материальные и энергетические расчеты

5. Термодинамический расчет

6. Утилизация и обезвреживание отходов в производстве аммиачной селитры

Заключение

Список использованных источников

Приложение А

Введение

В природе и в жизни человека азот имеет исключительно важное значение. Он входит в состав белковых соединений (16--18%), являющихся основой растительного и животного мира. Человек ежедневно потребляет 80--100 г белка, что соответствует 12--17 г азота.

Для нормального развития растений требуются многие химические элементы. Основные из них -- углерод, кислород, водород, азот, фосфор, магний, сера, кальций, калий и железо. Первые три элемента растения получают из воздуха и воды, остальные -- извлекают из почвы.

Особенно большая роль в минеральном питании растений принадлежит азоту, хотя его среднее содержание в растительной массе не превышает 1,5%. Без азота не может жить и нормально развиваться ни одно растение.

Азот является составной частью не только растительных белков, но и хлорофилла, с помощью которого растения под действием солнечной энергии усваивают углерод из находящейся в атмосфере двуокиси углерода СО2.

Природные соединения азота образуются вследствие химических процессов разложения органических остатков, при грозовых разрядах, а также биохимическим путем в результате деятельности особых бактерий -- азотобактера, непосредственно усваивающих азот из воздуха. Такой же способностью обладают клубеньковые бактерии, которые живут в корнях бобовых растений (горох, люцерна, бобы, клевер и др.).

Значительное количество азота и других питательных веществ, необходимых для развития сельскохозяйственных культур, ежегодно выносится из почвы с получаемым урожаем. Кроме того, часть питательных веществ теряется в результате вымывания их грунтовыми и дождевыми водами. Поэтому для предотвращения снижения урожайности и истощения почвы требуется пополнять ее питательными веществами путем внесения различных видов удобрений.

Известно, что почти каждое удобрение обладает физиологической кислотностью или щелочностью. В зависимости от этого оно может оказывать на почву подкисляющее или подщелачивающее действие, что учитывается при его использовании под определенные сельскохозяйственные культуры.

Удобрения, щелочные катионы которых быстрее извлекаются растениями из почвы, вызывают ее подкисление; растения, которые быстрее потребляют кислотные анионы удобрений, способствуют подщелачиванию почвы.

Азотные удобрения, содержащие катион аммония NН4 (аммиачная селитра, сульфат аммония) и амидную группу NН2 (карбамид), подкисляют почву. Подкисляющее действие аммиачной селитры слабее, чем сульфата аммония.

В зависимости от характера почвы, климатических и других условий под различные культуры требуется вносить различное количество азота.

В ассортименте азотных удобрений значительное место занимает аммиачная селитра (нитрат аммония, или азотнокислый аммоний), объем мирового производства которой исчисляется миллионами тонн в год.

В настоящее время примерно 50% азотных удобрений, применяемых в сельском хозяйстве нашей страны, приходится на долю аммиачной селитры.

Аммиачная селитра имеет ряд преимуществ перед другими азотными удобрениями. Она содержит 34--34,5% азота и в этом отношении уступает только карбамиду СО(NН2) 2, содержащему 46% азота. Другие азотные и азотсодержащие удобрения имеют значительно меньше азота (содержание азота приведено в пересчете на сухое вещество):

Таблица 1 - Содержание азота в соединениях

Аммиачная селитра является универсальным азотным удобрением, так как одновременно содержит аммиачную и нитратную формы азота. Она эффективна во всех зонах, почти под все сельскохозяйственные культуры.

Весьма важно, что формы азота аммиачной селитры используются растениями в разное время. Аммонийный азот, непосредственно участвующий в синтезе белка, быстро усваивается растениями в период роста; нитратный азот усваивается относительно медленно, поэтому действует более продолжительное время. Установлено также, что аммиачная форма азота может использоваться растениями без предварительного окисления.

Эти свойства аммиачной селитры весьма положительно сказываются на увеличении урожайности почти всех сельскохозяйственных культур.

Аммиачная селитра входит в состав большой группы устойчивых взрывчатых веществ. Взрывчатые вещества на основе аммиачной селитры и аммиачная селитра чистая или обработанная некоторыми добавками применяются для взрывных работ.

Небольшое количество селитры расходуется на получение закиси азота, используемой в медицине.

Наряду с увеличением объема производства аммиачной селитры путем модернизации действующих и строительства новых производств осуществляются мероприятия по дальнейшему улучшению качества готового продукта (получение продукта 100%-ной рассыпчатости и сохранение гранул после длительного хранения продукта) .

1. Физико-химические свойства аммиачной селитры

В чистом виде аммиачная селитра представляет собой белое кристаллическое вещество, содержащее 35% азота, 60% кислорода и 5% водорода. Технический продукт -- белого цвета с желтоватым оттенком, содержит не менее 34,2% азота.

Аммиачная селитра является сильным окислителем ряда неорганических и органических соединений. С расплавами некоторых веществ она бурно реагирует вплоть до взрыва (например, с нитритом натрия NaNO2).

Если над твердой аммиачной селитрой пропускать газообразный аммиак, то быстро образуется весьма подвижная жидкость -- аммиакат 2NH4NO3*2Np или NH4NO3*3Np.

Аммиачная селитра хорошо растворяется в воде, этиловом и метиловом спиртах, пиридине, ацетоне и в жидком аммиаке. С повышением температуры растворимость аммиачной селитры значительно возрастает , .

При растворении аммиачной селитры в воде поглощается большое количество тепла. Например, при растворении 1 моль кристаллической NH4NO3в 220--400 моль воды и температуре 10--15 °С происходит поглощение 6,4 ккал тепла.

Аммиачная селитра обладает свойством сублимироваться. При хранении аммиачной селитры в условиях повышенных температуры и влажности воздуха ее объем увеличивается примерно вдвое, что обычно приводит к разрыву тары.

Под микроскопом на поверхности гранул аммиачной селитры отчетливо видны поры и трещины. Повышенная пористость гранул селитры весьма отрицательно сказывается на физических свойствах готового продукта.

Аммиачная селитра отличается высокой гигроскопичностью. На открытом воздухе в тонком слое селитра весьма быстро увлажняется, теряет кристаллическую форму и начинает расплываться. Степень поглощения солью влаги из воздуха зависит от его влажности и давления паров над насыщенным раствором данной соли при данной температуре.

Между воздухом и гигроскопичной солью происходит влагообмен. Решающее влияние на этот процесс оказывает относительная влажность воздуха.

Кальциевая и известково-аммиачная селитры имеют сравнительно низкое давление водяных паров над насыщенными растворами; при определенной температуре им соответствует наиболее низкая относительная влажность воздуха. Это самые гигроскопичные соли среди указанных выше азотных удобрений. Наименее гигроскопичен сульфат аммония и практически совершенно негигроскопична калиевая селитра.

Влага поглощается только сравнительно небольшим слоем соли, непосредственно граничащим с окружающим воздухом. Однако даже такое увлажнение селитры сильно ухудшает физические свойства готового продукта. Скорость поглощения аммиачной селитрой влаги из воздуха с повышением его температуры резко увеличивается. Так, при 40 °С скорость поглощения влаги в 2,6 раза больше, чем при 23 °С.

Предложено много способов уменьшения гигроскопичности аммиачной селитры. Один из таких способов основан на смешении или сплавлении аммиачной селитры с другой солью. При выборе второй соли исходят из следующего правила: для понижения гигроскопичности давление водяных паров над насыщенным раствором смеси солей должно быть больше их давления над насыщенным раствором чистой аммиачной селитры.

Установлено, что гигроскопичность смеси двух солей, имеющих общий ион, больше, чем наиболее гигроскопичной из них (исключение составляют смеси или сплавы аммиачной селитры с сульфатом аммония и некоторые другие). Смешение же аммиачной селитры с негигроскопичными, но нерастворимыми в воде веществами (например, с известняковой пылью, фосфоритной мукой, дикальцийфосфатом и др.) не уменьшает ее гигроскопичности. Многочисленные опыты показали, что все соли, которые имеют такую же или большую растворимость в воде, чем аммиачная селитра, обладают свойством увеличивать ее гигроскопичность.

Соли же, способные уменьшать гигроскопичность аммиачной селитры, приходится добавлять в больших количествах (например, сульфат калия, хлористый калий, диаммонийфосфат), что резко снижает содержание в продукте азота.

Наиболее эффективным способом уменьшения поглощения влаги из воздуха является покрытие частиц селитры защитными пленками из не смачиваемых водой органических веществ. Защитная пленка в 3--5 раз снижает скорость поглощения влаги и способствует улучшению физических свойств аммиачной селитры.

Отрицательным свойством аммиачной селитры является ее способность слеживаться -- терять при хранении сыпучесть (рассыпчатость). При этом аммиачная селитра превращается в твердую монолитную массу, с трудом поддающуюся измельчению. Слеживаемость аммиачной селитры вызывается многими причинами.

Повышенное содержание влаги в готовом продукте. В частицах аммиачной селитры любой формы всегда содержится влага в виде насыщенного (маточного) раствора. Содержание NH4NO3 в таком растворе соответствует растворимости соли при температурах ее загрузки в тару. Во время остывания готового продукта маточный раствор часто переходит в пересыщенное состояние. При дальнейшем понижении температуры из пересыщенного раствора выпадает большое количество кристаллов размерами 0,2-- 0,3 мм. Эти новые кристаллы цементируют ранее не связанные частицы селитры, что приводит к превращению ее в плотную массу.

Низкая механическая прочность частиц селитры. Аммиачная селитра выпускается в виде частиц округлой формы (гранул), пластинок или мелких кристаллов. Частицы гранулированной аммиачной селитры имеют меньшую удельную поверхность и более правильную форму, чем чешуйчатой и мелкокристаллической, поэтому гранулы меньше слеживаются. Однако в процессе гранулирования образуется некоторое количество пустотелых частиц, отличающихся низкой механической прочностью.

При складировании мешки с гранулированной селитрой укладывают в штабеля высотой 2,5 м. Под давлением верхних мешков происходит разрушение наименее прочных гранул с образованием пылевидных частиц, которые уплотняют массу селитры, увеличивая ее слеживаемость. Практика показывает, что разрушение пустотелых частиц в слое гранулированного продукта резко ускоряет процесс его слеживания. Это наблюдается даже если при загрузке в тару продукт был охлажден до 45 °С и основная масса гранул имела хорошую механическую прочность. Установлено, что пустотелые гранулы разрушаются также вследствие рекристаллизации.

При повышении температуры окружающего воздуха гранулы селитры почти полностью теряют свою прочность, и такой продукт сильно слеживается.

Термическое разложение аммиачной селитры. Взрывоопасность. Огнестойкость. Аммиачная селитра с точки зрения взрывобезопасности относительно мало чувствительна к толчкам, трению, ударам, сохраняет устойчивость при попадании искр различной интенсивности. Примеси песка, стекла и металлические примеси не повышают чувствительности аммиачной селитры к механическим воздействиям. Она способна взрываться только под действием сильного детонатора или при термическом разложении в определенных условиях.

При продолжительном нагревании аммиачная селитра постепенно разлагается на аммиак и азотную кислоту:

NH4NO3=Np+HNO3 - 174598,32 Дж (1)

Этот процесс, протекающий с поглощением тепла, начинается при температуре выше 110°С.

При дальнейшем нагревании происходит разложение аммиачной селитры с образованием закиси азота и воды:

NH4NO3= N2О + 2Н2О + 36902,88 Дж (2)

Термическое разложение аммиачной селитры протекает по таким последовательным стадиям:

· гидролиз (или диссоциация) молекул NH4NO3;

· термическое разложение азотной кислоты, образующейся при гидролизе;

· взаимодействие двуокиси азота и аммиака, образующихся на первых двух стадиях.

При интенсивном нагревании аммиачной селитры до 220--240 °С ее распад может сопровождаться вспышками расплавленной массы.

Весьма опасен нагрев аммиачной селитры в замкнутом объеме или в объеме с ограниченным выходом газов, образующихся при термическом разложении селитры.

В этих случаях разложение аммиачной селитры может протекать по многим реакциям, в частности, по следующим:

NH4NO3 = N2+2Н2О + Ѕ 02 + 1401,64 Дж/кг (3)

2NH4NO3 = N2 +2NO+ 4Н20 + 359,82 Дж/кг (4)

ЗNH4NO3= 2N2 + N0 + N02 + 6Н20 + 966,50 Дж/кг (5)

Из приведенных выше реакций видно, что аммиак, образующийся в начальный период термического разложения селитры, часто отсутствует в газовых смесях; в них протекают вторичные реакции, в ходе которых аммиак полностью окисляется до элементарного азота. В результате вторичных реакций резко увеличивается давление газовой смеси в замкнутом объеме и процесс разложения может закончиться взрывом.

Медь, сульфиды, магний, колчедан и некоторые другие примеси активируют процесс разложения аммиачной селитры при ее нагревании. В результате взаимодействия этих веществ с нагретой селитрой образуется неустойчивый нитрит аммония, который при 70--80 °С бурно разлагается со взрывом:

NH4NO3=N2+ 2Н20 (6)

С железом, оловом и алюминием аммиачная селитра не реагирует даже в расплавленном состоянии.

С повышением влажности и увеличением размера частиц аммиачной селитры чувствительность ее к взрыву сильно уменьшаетcя. В присутствии примерно 3% влаги селитра становится нечувствительной к взрыву даже при действии сильного детонатора.

Термическое разложение аммиачной селитры с повышением давления до определенного предела усиливается. Установлено, что при давлении около 6 кгс/см2 и соответствующей температуре происходит распад всей расплавленной селитры.

Решающее значение для уменьшения или предотвращения термического разложения аммиачной селитры имеет поддержание щелочной среды при упаривании растворов. Поэтому в новой технологической схеме производства неслеживающейся аммиачной селитры целесообразно добавлять к горячему воздуху небольшое количество аммиака.

Учитывая, что в определенных условиях аммиачная селитра может являться взрывоопасным продуктом, в процессе ее производства, при хранении и перевозке следует строго соблюдать установленный технологический режим и правила по технике безопасности.

Аммиачная селитра относится к негорючим продуктам. Поддерживает горение только закись азота, образующаяся при термическом разложении соли.

Смесь аммиачной селитры с измельченным древесным углем при сильном нагревании способна самовоспламеняться. Некоторые легко окисляемые металлы (например, порошкообразный цинк) в контакте с влажной аммиачной селитрой при небольшом нагреве также могут вызвать ее воспламенение. В практике наблюдались случаи самопроизвольного воспламенения смесей аммиачной селитры с суперфосфатом.

Бумажные мешки или деревянные бочки, в которых находилась аммиачная селитра, могут загораться даже под действием солнечных лучей. При возгорании тары с аммиачной селитрой возможно выделение окислов азота и паров азотной кислоты. При пожарах, возникающих от открытого пламени или вследствие детонации, аммиачная селитра расплавляется и частично разлагается. В глубину массы селитры пламя не распространяется , .

2 . Методы производства

аммиачный селитра нейтрализация кислота

В промышленности широко применяется только метод получения аммиачной селитры из синтетического аммиака (или аммиаксодержащих газов) и разбавленной азотной кислоты.

Производство аммиачной селитры из синтетического аммиака (или аммиаксодержащих газов) и азотной кислоты является многостадийным. В связи с этим пытались получать аммиачную селитру непосредственно из аммиака, окислов азота, кислорода и паров воды по реакции

4Np + 4NO2 + 02 + 2Н20 = 4NH4NO3 (7)

Однако от этого способа пришлось отказаться, так как наряду с аммиачной селитрой образовывался нитрит аммония -- неустойчивый и взрывоопасный продукт.

В производство аммиачной селитры из аммиака и азотной кислоты внедрен ряд усовершенствований, которые позволили сократить капитальные затраты на строительство новых установок и уменьшить себестоимость готового продукта.

Для коренного усовершенствования производств аммиачной селитры потребовалось отказаться от сложившихся в течение многих лет представлений о невозможности работать без соответствующих резервов основного оборудования (например, выпарных аппаратов, грануляционных башен и др.), об опасности получения для гранулирования почти безводного плава аммиачной селитры.

В России и за рубежом твердо установлено, что только строительство агрегатов большой мощности, с использованием современных достижений науки и техники, может дать существенные экономические преимущества по сравнению с действующими производствами аммиачной селитры.

Значительное количество аммиачной селитры в настоящее время производится из отходящих аммиаксодержащих газов некоторых систем синтеза карбамида. По одному из способов его производства на 1 т карбамида получается от 1 до 1,4 т аммиака. Из такого количества аммиака можно выработать 4,6--6,5 т аммиачной селитры. Хотя работают и более совершенные схемы синтеза карбамида, аммиаксодержащие газы -- отходы этого производства--еще некоторое время будут служить сырьем для получения аммиачной селитры.

Способ производства аммиачной селитры из аммиаксодержащих газов отличается от способа ее получения из газообразного аммиака только на стадии нейтрализации.

В небольших количествах аммиачную селитру получают путем обменного разложения солей (конверсионные способы).

Эти способы получения аммиачной селитры основываются на выпадении одной из образующихся солей в осадок или на получении двух солей с разной растворимостью в воде. В первом случае растворы аммиачной селитры отделяют от осадков на вращающихся фильтрах и перерабатывают в твердый продукт по обычным схемам. Во втором случае растворы упаривают до определенной концентрации и разделяют их дробной кристаллизацией, которая сводится к следующему: при охлаждении горячих растворов выделяют большую часть аммиачной селитры в чистом виде, затем в отдельной аппаратуре проводят кристаллизацию из маточных растворов с получением загрязненного примесями продукта.

Все способы получения аммиачной селитры обменным разложением солей сложны, связаны с большим расходом пара и потерей связанного азота. Их обычно применяют в промышленности только в случае необходимости утилизации соединений азота, получаемых как побочные продукты.

Современный способ производства аммиачной селитры из газообразного аммиака (или аммиаксодержащих газов) и азотной кислоты непрерывно совершенствуется.

3 . Основные стадии производства аммиачной селитры из аммиака и азотной кислоты

Процесс производства аммиачной селитры состоит из следующих основных стадий:

1. Получение растворов аммиачной селитры нейтрализацией азотной кислоты газообразным аммиаком или аммиаксодержащими газами.

2. Упаривание растворов аммиачной селитры до состояния плава.

3. Кристаллизация из плава соли в виде частиц округлой формы (гранул), чешуек (пластинок) и мелких кристаллов.

4. Охлаждение или сушка соли.

5. Упаковка в тару готового продукта.

Для получения малослеживающейся и водоустойчивой аммиачной селитры кроме указанных стадий необходима еще стадия приготовления соответствующих добавок.

3.1 П олучение растворов аммиачной селитры

3.1.1 Основы процесса нейтрализации

Растворы аммиачной селит ры получают в результате взаимодействия аммиака с азотной кислотой по реакции:

4NН3 + НNO3 = NН4NO3 + Q Дж (8)

Образование аммиачной селитры протекает необратимо и сопровождается выделением тепла. Количество тепла, выделяющегося при реакции нейтрализации, зависит от концентрации применяемой азотной кислоты и ее температуры, а также от температуры газообразного аммиака (или аммиаксодержащих газов). Чем выше концентрация азотной кислоты, тем больше выделяется тепла. При этом происходит испарение воды, что позволяет получать более концентрированные растворы аммиачной селитры. Для получения растворов аммиачной селитры применяют 42--58%-ную азотную кислоту.

Применение азотной кислоты концентрацией выше 58% для получения растворов аммиачной селитры при существующем оформлении процесса не представляется возможным, так как в этом случае в аппаратах-нейтрализаторах развивается температура, значительно превышающая температуру кипения азотной кислоты, что может привести к ее разложению с выделением окислов азота. При упаривании растворов аммиачной селитры за счет тепла реакции в аппаратах-нейтрализаторах образуется соковый пар, имеющий температуру 110--120 °С ,.

При получении растворов аммиачной селитры максимально возможной концентрации требуются относительно небольшие теплообменные поверхности выпарных аппаратов, и на дальнейшее упаривание растворов расходуется малое количество свежего пара. В связи с этим вместе с исходным сырьем стремятся подводить в нейтрализатор дополнительное количество тепла, для чего подогревают соковым паром аммиак до 70 °С и азотную кислоту до 60 °С (при более высокой температуре азотной кислоты происходит значительное ее разложение, и трубы подогревателя подвергаются сильной коррозии, если они изготовлены не из титана).

Применяемая в производстве аммиачной селитры азотная кислота должна содержать не более 0,20% растворенных окислов азота. Если кислота недостаточно продута воздухом для удаление растворенных окислов азота, они образуют с аммиаком нитрит аммония, быстро разлагающийся на азот и воду. При этом потери азота могут составить около 0,3 кг на 1 т готового продукта.

В соковом паре, как правило, содержатся примеси NН3, NHО3 и NН4NO3. Количество этих примесей сильно зависит от стабильности давлений, при которых должны подаваться в нейтрализатор аммиак и азотная кислота. Для поддержания заданного давления азотную кислоту подают из напорного бака, снабженного переливной трубой, а газообразный аммиак -- с помощью регулятора давления.

Нагрузка нейтрализатора также в значительной степени определяет потери связанного азота с соковым паром. При нормальной нагрузке потери с конденсатом сокового пара не должны превышать 2 г/л (в пересчете на азот). При превышении нагрузки нейтрализатора между аммиаком и парами азотной кислоты протекают побочные реакции, в результате которых в газовой фазе образуется, в частности, туманообразная аммиачная селитра, загрязняющая соковый пар, и увеличиваются потери связанного азота. Получаемые в нейтрализаторах растворы аммиачной селитры накапливаются в промежуточных емкостях с мешалками, донейтрализуются аммиаком или азотной кислотой, после чего направляется на упаривание.

3.1.2 Характеристика нейтрализационных установок

В зависимости от применя емого давления современные установки для получения растворов аммиачной селитры с использованием тепла нейтрализации подразделяются на установки, работающие при атмосферном давлении; при разрежении (вакууме); при повышенном давлении (несколько атмосфер) и на комбинированные установки, работающие под давлением в зоне нейтрализации и при разрежении в зоне отделения соковых паров от раствора (плава) аммиачной селитры.

Установки, работающие при атмосферном или небольшом избыточном давлении, отличаются простотой технологии и конструктивного оформления. Они также легко обслуживаются, пускаются в работу и останавливаются; случайные нарушения заданного ре-жима работы обычно быстро устраняются. Установки такого типа получили наиболее широкое распространение. Основным аппаратом этих установок является аппарат-нейтрализатор ИТН (использование тепла нейтрализации). Аппарат ИТН работает под абсолютным давлением 1,15--1,25 атм. Конструктивно он оформлен таким образом, что почти не происходит вскипания растворов- с образованием туманообразной аммиачной селитры.

Наличие циркуляции в аппаратах ИТН исключает перегрев в зоне реакции, что позволяет проводить процесс нейтрализации с минимальными потерями связанного азота.

В зависимости от условий работы производства аммиачной селитры соковый пар аппаратов ИТН используется для предварительного упаривания растворов селитры, для испарения жидкого аммиака, подогрева азотной кислоты и газообразного аммиака, направляемых в аппараты ИТН, и для испарения жидкого аммиака при получении газообразного аммиака, применяемого в производстве разбавленной азотной кислоты.

Растворы аммиачной селитры из аммиаксодержащих газов получают на установках, основные аппараты которых работают при разрежении (испаритель) и при атмосферном давлении (скруббер-нейтрализатор). Такие установки громоздки и в них трудно поддерживать стабильный режим работы вследствие непостоянства состава аммиаксодержащих газов. Последнее обстоятельство отрицательно сказывается на точности регулирования избытка азотной кислоты, в результате чего в получаемых растворах аммиачной селитры часто содержится повышенное количество кислоты или аммиака.

Установки нейтрализации, работающие под абсолютным давлением 5--6 атм., мало распространены. Они требуют значительного расхода электроэнергии для сжатия газообразного аммиака и подачи в нейтрализаторы азотной кислоты под давлением. Кроме того, на этих установках возможны повышенные потери аммиачной селитры вследствие уноса брызг растворов (даже в сепараторах сложной конструкции брызги не удается полностью улавливать).

В установках, основанных на комбинированном методе, сочетаются процессы нейтрализации азотной кислоты аммиаком и получения плава аммиачной селитры, который можно непосредственно направлять на кристаллизацию (т. е. из таких установок исключаются выпарные аппараты для концентрирования растворов селитры). Для установок такого типа требуется 58--60%-ная азотная кислота, которую промышленность выпускает пока сравнительно в небольших количествах. Кроме того, часть аппаратуры должна быть выполнена из дорогостоящего титана. Процесс нейтрализации с получением плава селитры приходится проводить при весьма высоких температурах (200--220 °С). Учитывая свойства аммиачной селитры, для осуществления процесса при высоких температурах необходимо создать особые условия, предотвращающие термическое разложение плава селитры.

3.1.3 Установки нейтрализации, работающие при атмосферном давлении

В состав этих установок вхо дят аппараты-нейтрализаторы ИТН (использование теплоты нейтрализации) и вспомогательная аппаратура.

На рисунке 1 изображена одна из конструкций аппарата ИТН, применяемая на многих действующих производствах аммиачной селитры.

З1 - завихритель; ВС1 - внешний сосуд (резервуар); ВЦ1 - внутренний цилиндр (нейтрализационная часть); У1 - устройство для распределения азотной кислоты; Ш1 - штуцер для слива растворов; О1 - окна; У2 - устройство для распределения аммиака; Г1 - гидрозатвор; С1 - сепаратор-ловушка

Рисунок 1 - Аппарат-нейтрализатор ИТН с естественной циркуляцией растворов

Аппарат ИТН представляет собой вертикальный цилиндрический сосуд (резервуар) 2, в котором помещен цилиндр (стакан) 3 с полками 1 (завихритель) для улучшения смешения растворов. В цилиндр 3 подведены трубопроводы для ввода азотной кислоты и газообразного аммиака (реагенты подаются противотоком); трубы заканчиваются устройствами 4 и 7 для лучшего распределения кислоты и газа. Во внутреннем цилиндре происходит взаимодействие азотной кислоты с аммиаком. Этот цилиндр носит название нейтрализационной камеры.

Кольцевое пространство между сосудом 2 и цилиндром 3 служит для циркуляции кипящих растворов аммиачной селитры. В нижней части цилиндра имеются отверстия 6 (окна), соединяющие нейтрализационную камеру с испарительной частью ИТН. Из-за наличия этих отверстий производительность аппаратов ИТН несколько снижается, зато достигается интенсивная естественная циркуляция растворов, что приводит к уменьшению потерь связанного азота.

Выделяющийся из раствора соковый пар отводится через штуцер в крышке аппарата ИТН и через ловушку-сепаратор 9. Образующиеся в цилиндре 3 растворы селитры в виде эмульсии -- смеси с соковым паром поступают в сепаратор через гидрозатвор 5. Из штуцера нижней части ловушки-сепаратора растворы аммиачной селитры направляются в донейтрализатор-мешалку для дальнейшей обработки. Гидрозатвор, имеющийся в испарительной части аппарата, позволяет поддерживать в нем постоянный уровень раствора и препятствует выходу сокового пара без промывки от увлекаемых им брызг раствора.

Паровой конденсат образуется на тарелках сепаратора вследствие частичной конденсации сокового пара. При этом теплота конденсации отводится оборотной водой, проходящей по змеевикам, уложенным на тарелках. В результате частичной конденсации сокового пара получается 15--20%-ный раствор NН4NO3, который направляется на упаривание вместе с основным потоком раствора аммиачной селитры.

На рисунке 2 представлена схема одной из установок нейтрализации, работающих при давлении, близком к атмосферному.

НБ1 - напорный бак; С1 - сепаратор; И1 - испаритель; П1 - подогреватель; СК1 - сборник для конденсата; ИТН1 - аппарат ИТН; М1 - мешалка; ЦН1 - центробежный насос

Рисунок 2 - Схема установки нейтрализации, работающей при атмосферном давлении

Чистая или с добавками азотная кислота подается в напорный бак снабженный постояннодействующим переливом избытка кислоты в хранилище.

Из напорного бака 1 азотная кислота направляется непосредственно в стакан аппарата ИТН 6 или через подогреватель (на рисунке не показан), где нагревается теплом сокового пара, отводимого через сепаратор 2.

Газообразный аммиак поступает в испаритель 3 жидкого аммиака, затем в подогреватель 4, где нагревается теплом вторичного пара из расширителя или горячим конденсатом греющего пара выпарных аппаратов, и далее направляется по двум параллельным трубам в стакан аппарата ИТН 6.

В испарителе 3 брызгоунос жидкого аммиака испаряется и происходит отделение загрязнений, обычно сопутствующих газообразному аммиаку. При этом образуется слабая аммиачная вода с примесью смазочного масла и катализаторной пыли цеха синтеза аммиака.

Получаемый в нейтрализаторе раствор аммиачной селитры через гидравлический затвор и брызгоуловитель-ловушку непрерывно поступает в мешалку-донейтрализатор 7, откуда после нейтрализации избыточной кислоты направляется на упаривание.

Выделяющийся в аппарате ИТН соковый пар, пройдя сепаратор 2, направляется для использования в качестве греющего пара в выпарные аппараты первой ступени.

Конденсат сокового пара из подогревателя 4 собирается в сборнике 5, откуда расходуется на разные производственные нужды.

Перед пуском нейтрализатора выполняются подготовительные работы, предусмотренные в рабочих инструкциях. Отметим только некоторые из подготовительных работ, связанных с нормальным ведением процесса нейтрализации и с обеспечением техники безопасности.

Прежде всего, требуется залить в нейтрализатор раствор аммиачной селитры или паровой конденсат до пробоотборного краника.

Затем необходимо наладить непрерывную подачу азотной кислоты в напорный бак и ее перелив в складское хранилище склада. После этого требуется принять газообразный аммиак из цеха синтеза аммиака, для чего необходимо на короткое время открыть задвижки на линии отвода в атмосферу сокового пара и вентиль выхода раствора в мешалку-донейтрализатор. Этим предупреждается создание в аппарате ИТН повышенного давления и образование небезопасной аммиачно-воздушной смеси при пуске аппарата.

В этих же целях до пуска нейтрализатор и взаимосвязанная с ним коммуникация продуваются паром.

После достижения нормального режима работы соковый пар из аппарата ИТН направляется на использование в качестве греющего пара,].

3.1.4 Установки нейтрализации, работающие при разрежении

Совместная переработка амм иаксодержащих газов и газообразного аммиака нецелесообразна, так как связана с большими потерями аммиачной селитры, кислоты и аммиака из-за наличия в аммиаксодержащих газах значительного количества примесей (азот, метан, водород и др.)- Эти примеси, барботируя через образующиеся кипящие растворы аммиачной селитры, уносили бы с соковым паром связанный азот. Кроме того, соковый пар, загрязненный примесями, нельзя было бы использовать в качестве греющего пара. Поэтому аммиаксодержащие газы, как правило, перерабатывают отдельно от газообразного аммиака.

В установках, работающих при разрежении, использование тепла реакции осуществляется вне нейтрализатора-- в вакуум-испарителе. Здесь горячие растворы аммиачной селитры, поступающие из нейтрализатора, кипят при температуре, соответствующей вакууму в аппарате. В состав таких установок входят: нейтрализатор скрубберного типа, вакуум-испаритель и вспомогательное оборудование.

На рисунке 3 представлена схема установки нейтрализации, работающей с применением вакуум-испарителя.

НР1 - нейтральзатор скрубберного типа; Н1 - насос; В1 - вакуум-испаритель; В2 - вакуум-сепаратор; НБ1 - напорный бак азотной кислоты; Б1 - бак (затворсмеситель); П1 - промыватель; ДН1 - донейтрализатор

Рисунок 3 - Схема установки нейтрализации с вакуум-испарителем

Аммиаксодержащие газы при температуре 30--90 °С под давлением 1,2--1,3 атм подаются в нижнюю часть скруббера-нейтрализатора 1. В верхнюю часть скруббера из бака- затвора 6 поступает циркуляционный раствор селитры, в который обычно непрерывно подается из бака 5 азотная кислота, иногда предварительно нагретая до температуры не выше 60 °С. Процесс нейтрализации проводится при избытке кислоты в пределах 20-50 г/л. В скруббере 1 обычно поддерживается температура на 15--20 °С ниже температуры кипения растворов, что позволяет предотвращать разложение кислоты и образование тумана аммиачной селитры. Заданная температура поддерживается благодаря орошению скруббера раствором из вакуум-испарителя, который работает при разрежении 600 мм рт. ст., поэтому раствор в нем имеет более низкую температуру, чем в скруббере.

Получаемый в скруббере раствор селитры засасывается в вакуум-испаритель 5, где при разрежении 560--600 мм рт. ст. происходит частичное испарение воды (упаривание) и повышение концентрации раствора.

Из вакуум-испарителя раствор стекает в бак-гидрозатвор 6, откуда большая его часть снова поступает на орошение скруббера 1, а остальное количество направляется в донейтрализатор 8. Соковый пар, образующийся в вакуум-испарителе 3, через вакуум-сепаратор 4 направляется в поверхностный конденсатор (на рисунке не показан) или в конденсатор смесительного типа. В первом случае конденсат сокового пара используется в производстве азотной кислоты, во втором -- для различных других целей. Разрежение в вакуум-испарителе создается благодаря конденсации сокового пара. Несконденсировавшиеся пары и газы отсасываются из конденсаторов вакуум-насосом и отводятся в атмосферу.

Отработанные газы из скруббера 1 поступают в аппарат 7, где промываются конденсатом для удаления капель раствора селитры, после чего также удаляются в атмосферу. В мешалке-донейтрализаторе растворы нейтрализуются до содержания 0,1--0,2 г/л свободного аммиака и вместе с потоком раствора селитры, полученного в аппаратах ИТН, направляются на упаривание.

На рисунке 4 представлена более совершенная схема вакуум-нейтрализации.

ХК1 - холодильник-конденсатор; СН1 - скруббер-нейтрализатор; С1, С2 - сборники; ЦН1, ЦН2, ЦН3 - центробежные насосы; П1 - промыватель газов; Г1 - гидрозатвор; Л1 - ловушка; В1 - вакуум-испаритель; БД1 - бак-донейтрализатор; В2 - вакуум-насос; П2 - промыватель сокового аппарата; К1 - конденсатор поверхностный

Рисунок 4 - Схема вакуум-нейтрализации:

Газы дистилляции направляются в нижнюю часть скруббера нейтрализатора 2, орошаемого раствором из сборника 3 с помощью циркуляционного насоса 4.

В сборник 3 через гидрозатвор 6 поступают растворы из скруббера-нейтрализатора 2, а также растворы после ловушки вакуум-испарителя 10 и промывателя сокового пара 14.

Через напорный бак (на рисунке не показан) азотная кислота раствор из промывателя газов 5, орошаемого конденсатом сокового пара, непрерывно поступают в сборник 7. Отсюда растворы циркуляционным насосом 8 подаются в промыватель 5, пройдя который возвращаются в сборник 7.

Горячие газы после промывателя 5 охлаждаются в холодильнике-конденсаторе 1 и выбрасываются в атмосферу.

Горячие растворы аммиачной селитры из гидрозатвора 6 засасываются с помощью вакуум-насоса 13 в вакуум-испаритель 10, где концентрация NH4NO3 увеличивается на несколько процентов.

Выделяющиеся в вакуум-испарителе 10 соковые пары, пройдя ловушку 9, промыватель 14 и поверхностный конденсатор 15, вакуум-насосом 13 выбрасываются в атмосферу.

Раствор аммиачной селитры с заданной кислотностью отводится из нагнетательной линии насоса 4 в бак-донейтрализатор. Здесь раствор нейтрализуется газообразным аммиаком и насосом 12 направляется на выпарную станцию.

3.1. 5 Основное оборудование

Нейтрализаторы ИТН. Применяется несколько типов нейтрализаторов, отличающихся главным образом размерами и конструкцией устройств для распределения аммиака и азотной кислоты внутри аппарата. Часто применяются аппараты следующих размеров: диаметр 2400 мм, высота 7155 мм, стакан -- диаметр 1000 мм, высота 5000 мм. Эксплуатируются также аппараты диаметром 2440 мм и высотой 6294 мм и аппараты, из которых удалена ранее предусмотренная мешалка (рисунок 5).

ЛК1 - люк; П1 - полки; Л1 - линия для отбора проб; Л2 - линия вывода растворов; ВС1 - внутренний стакан; С1 - сосуд внешний; Ш1 - штуцер для слива растворов; Р1 - распределитель аммиака; Р2 - распределитель азотной кислоты

Рисунок 5 - Аппарат-нейтрализатор ИТН

В отдельных случаях для переработки небольших количеств аммиаксодержащих газов используются аппараты ИТН диаметром 1700 мм и высотой 5000 мм.

Подогреватель газообразного аммиака -- кожухотрубный аппарат из углеродистой стали. Диаметр корпуса 400--476 мм, высота 3500--3280 мм. Трубчатка часто состоит из 121 трубки (диаметр трубки 25x3 мм) с общей поверхностью теплообмена 28 м2. Газообразный аммиак поступает в трубки, а греющий пар или горячий конденсат -- в межтрубное пространство.

Если для обогрева применяется соковый пар из аппаратов ИТН, то подогреватель выполняется из нержавеющей стали 1Х18Н9Т.

Испаритель жидкого аммиака представляет собой аппарат из углеродистой стали, в нижней части которого расположен паровой змеевик, а в средней -- тангенциальный ввод газообразного аммиака.

В большинстве случаев испаритель работает на свежем паре давлением (избыточным) 9 атм. Внизу испарителя аммиака имеется штуцер для периодической продувки от накапливающихся загрязнений.

Подогреватель азотной кислоты -- кожухотрубный аппарат диаметром 400 мм, длиной 3890 мм. Диаметр трубок 25x2 мм, длина 3500 мм; общая поверхность теплообмена 32 м2. Обогрев ведется соковым паром абсолютным давлением 1,2 атм.

Нейтрализатор скрубберного типа -- вертикальный цилиндрический аппарат диаметром 1800--2400 мм, высотой 4700--5150 мм. Применяются также аппараты диаметром 2012 мм и высотой 9000 мм. Внутри аппарата для равномерного распределения циркуляционных растворов по сечению расположено несколько дырчатых тарелок или насадка из керамических колец. В верхней части аппаратов, оборудованных тарелками, уложен слой колец размерами 50x50x3 мм, являющийся отбойником брызг растворов.

Скорость газов в свободном сечении скруббера при диаметре 1700 мм и высоте 5150 мм составляет около 0,4 м/сек. Орошение аппарата скрубберного типа растворами осуществляется при помощи центробежных насосов производительностью 175--250 м3/ч.

Вакуум-испаритель -- вертикальный цилиндрический аппарат диаметром 1000--1200 мм и высотой 5000--3200 мм. Насадка -- керамические кольца размерами 50x50x5 мм, уложенные правильными рядами.

Промыватель газа -- вертикальный цилиндрический аппарат из нержавеющей стали диаметром 1000 мм, высотой 5000 мм. Насадка-- керамические кольца размерами 50x50x5 мм.

Мешалка-донейтрализатор -- цилиндрический аппарат с мешалкой, вращающейся со скоростью 30 об/мин. Привод осуществляется от электродвигателя через редуктор (рисунок 6).

Ш1 - штуцер для установки измерителя уровня; В1 - воздушник; Э1 - электродвигатель; Р1 - редуктор; ВМ1 - вал мешалки; Л1 - лаз

Рисунок 6 - Мешалка-донейтрализатор

Диаметр часто применяемых аппаратов 2800 мм, высота 3200 мм. Они работают под атмосферным давлением, служат для донейтрализации растворов аммиачной селитры и в качестве промежуточных емкостей для растворов, направляемых на упаривание.

Поверхностный конденсатор -- вертикальный кожухотрубный двухходовой (по воде) теплообменник, предназначенный для конденсации сокового пара, поступающего из вакуум-испарителя. Диаметр аппарата 1200 мм, высота 4285 мм; поверхность теплопередачи 309 м2. Он работает при разрежении примерно 550-- 600 мм рт. ст.; имеет трубки: диаметр 25x2 мм, длина 3500 м общее число 1150 шт.; вес такого конденсатора -- около 7200 Кг

В отдельных случаях для ликвидации выбросов в атмосферу сокового пара, сбрасываемого при продувках из выпарных аппаратов, ловушек аппаратов ИТН и гидрозатворов, устанавливается поверхностный конденсатор со следующей характеристикой: диаметр корпуса 800 мм, высота 4430 мм, общее количество трубок 483 шт., диаметр 25x2, общая поверхность 125 м2.

Вакуум-насосы. Применяются разные типы насосов. Насос типа ВВН-12 имеет производительность 66 м3/ч, скорость вращения вала 980 об/мин. Насос предназначен для создания вакуума в вакуум-нейтрализационной установке.

Центробежные насосы. Для циркуляции раствора аммиачной селитры на установке вакуум-нейтрализации часто применяются насосы марки 7ХН-12 производительностью 175--250 м3/ч. Установочная мощность электродвигателя 55 квт .

4 . Материальные и энергетические расчеты

Произведем расчет материального и теплового баланса процесса. Расчеты нейтрализации азотной кислоты газообразным аммиаком выполняю на 1 т продукта. Исходные данные беру из таблицы 2, используя методику пособий , , .

Принимаем, что процесс нейтрализации будет протекать в следующих условиях:

Начальная температура, °С

газообразного аммиака...........................................................................50

азотной кислоты......................................................................................20

Таблица 2 - Исходные данные

Материальный расчет

1 Для получения 1 т селитры по реакции:

Np+HNO3=NH4NO3 +Q Дж (9)

теоретически требуется следующее количество сырья (в кг):

17 - 80 х = 1000*17/80 = 212,5

азотной кислоты

63 - 80 х = 1000*63/80 = 787,5

Где 17, 63 и 80 - молекулярные массы аммиака, азотной кислоты и аммиачной селитры соответственно.

Практический расход Np и HNO3 несколько выше теоретического, так как в процессе нейтрализации неизбежны потери реагентов с соковым паром через неплотности коммуникаций вследствие небольшого разложения реагирующих компонентов и селитры и т.д.

2. Определим количество аммиачной селитры в товарном продукте: 0,98*1000=980 кг/ч

980/80=12,25 кмоль/ч,

а также количество воды:

1000-980=20 кг/ч

3. Рассчитаю расход азотной кислоты (100%-ной) на получение 12,25 кмоль/ч селитры. По стехиометрии ее расходуется столько же (кмоль/ч), сколько образовалось селитры: 12,25 кмоль/ч, или 12,25*63=771, 75 кг/ч

Поскольку в условиях задана полная (100%-ная) конверсия кислоты, это и будет ее поданное количество.

В процессе участвует разбавленная кислота - 60%-ная:

771,75/0,6=1286,25 кг/ч,

в том числе воды:

1286,25-771,25=514,5 кг/ч

4. Аналогично, расход аммиака (100%-ного) на получение 12,25 кмоль/ч, или 12,25*17=208,25 кг/ч

В пересчете на 25%-ную аммиачную воду это составит 208,25/0,25= 833 кг/ч, в том числе воды 833-208,25=624,75 кг/ч.

5. Найду общее количество воды в нейтрализаторе, поступившее с реагентами:

514,5+624,75=1139,25 кг/ч

6. Определим количество водяного пара, образовавшегося про упаривании раствора селитры (20 кг/ч остается в товарном продукте): 1139,25 - 20=1119,25 кг/ч.

7. Составим таблицу материального баланса процесса производства аммиачной селитры.

Таблица 3 - Материальный баланс процесса нейтрализации

8. Рассчитаем технологически показатели.

· теоретические расходные коэффициенты:

по кислоте - 63/80=0,78 кг/кг

по аммиаку - 17/80=0,21 кг/кг

· фактические расходные коэффициенты:

по кислоте - 1286,25/1000=1,28 кг/кг

по аммиаку - 833/1000=0,83 кг/кг

В процессе нейтрализации проходила только одна реакция, конверсия сырья равняла 1 (т.е. произошло полное превращение),потери отсутствовали, значит фактически выход равен теоретическому:

Qф/Qт*100=980/980*100=100%

Энергетический расчет

Приход тепла. В процессе нейтрализации приход тепла складывается из тепла, вносимого аммиаком и азотной кислотой, и тепла, выделяющегося при нейтрализации.

1. Тепло, вносимое газообразным аммиаком, составляет:

Q1=208,25*2,18*50=22699,25 кДж,

где 208,25 - расход аммиака, кг/ч

2,18 - теплоемкость аммиака, кДж/(кг*°С)

50 - температура аммиака, °С

2. Тепло вносимое азотной кислотой:

Q2=771,75*2,76*20=42600,8 кДж,

где 771,25 - расход азотной кислоты, кг/ч

2,76 - теплоемкость азотной кислоты, кДж/(кг*°С)

20 - температура кислоты, °С

3. Теплоту нейтрализации предварительно рассчитывают на 1 моль образующейся аммиачной селитры по уравнению:

HNO3*3,95pO(жидк) +Np(газ) =NH4NO3*3,95pO(жидк)

где HNO3*3,95pO соответствует азотной кислоте.

Тепловой эффект Q3 этой реакции находим из следующих величин:

а) теплота растворения в воде азотной кислоты:

HNO3+3,95 pO=HNO3*3,95pO (10)

б) теплота образования твердого NH4NO3 из 100%-ной азотной кислоты и 100%-ного аммиака:

HNO3 (жидк) +Np(газ) =NH4NO3(тв) (11)

в) теплота растворения аммиачной селитры в воде с учетом расхода реакционного тепла на упаривание получаемого раствора от 52,5% (NH4NO3 *pO) до 64% (NH4NO3 *2,5pO)

NH4NO3 +2,5pO= NH4NO3*2,5pO, (12)

где NH4NO3*4pO соответствует концентрации 52,5% NH4NO3

Величина NH4NO3*4pO рассчитывается из соотношения

80*47,5/52,5*18=4pO,

где 80 - молярный вес NH4NO3

47,5 - концентрация HNO3 , %

52,5 - концентрация NH4NO3 , %

18 - молярный вес pO

Аналогично рассчитывается величина NH4NO3*2,5pO, соответствующая 64%-ному раствору NH4NO3

80*36/64*18=2,5pO

По реакции (10) теплота растворения q азотной кислоты в воде равна 2594,08 Дж/моль. Для определения теплового эффекта реакции (11) требуется из теплоты образования нитрата аммония вычесть сумму теплот образования Np(газ) и HNO3 (жидк).

Теплота образования этих соединений из простых веществ при 18°С и 1 атм имеет следующие значения (в Дж/моль):

Np(газ):46191,36

HNO3 (жидк):174472,8

NH4NO3(тв):364844,8

Общий тепловой эффект химического процесса зависит только от теплот образования исходных взаимодействующих веществ и конечных продуктов. Из этого следует, что тепловой эффект реакции (11) составит:

q2=364844,8-(46191,36+174472,8)=144180,64 Дж/моль

Теплота q3 растворения NH4NO3 по реакции (12) равна 15606,32 Дж/моль.

Растворение NH4NO3 в воде протекает с поглощение тепла. В связи с этим теплота растворения принимается в энергетическом балансе со знаком минус. Концентрирование же раствора NH4NO3 протекает соответственно с выделением тепла.

Таким образом, тепловой эффект Q3 реакции

HNO3 +*3,95pO(жидк)+ Np(газ) =NH4NO3*2,5pO(жидк)+1.45 pO(пар)

составит:

Q3=q1+q2+q3= -25940,08+144180,64-15606,32=102633,52 Дж/моль

При выработке 1 т аммиачной селитры тепло реакции нейтрализации составит:

102633,52*1000/80=1282919 кДж,

где 80 - молекулярный вес NH4NO3

из приведенных выше расчетов видно, что суммарный приход тепла составит: с аммиаком 22699,25, с азотной кислотой 42600,8, за счет тепла нейтрализации 1282919 и всего 1348219,05 кДж.

Расход тепла. При нейтрализации азотной кислоты аммиаком тепло отводится из аппарата получаемым раствором аммиачной селитры, расходуется на испарение воды из этого раствора и теряется в окружающую среду.

Количество тепла, уносимого раствором аммиачной селитры, составляет:

Q=(980+10)*2,55 tкип,

где 980 - количество раствора аммиачной селитры, кг

10 - потери Np и HNO3 ,кг

tкип - температура кипения раствора аммиачной селитры, °С

Температуру кипения раствора аммиачной селитры определяем при абсолютном давлении в нейтрализаторе 1,15 - 1,2 атм; этому давлению соответствует температура насыщенного водяного пара 103 °С. при атмосферном же давлении температура кипения раствора NH4NO3 составляет 115,2 °С. температурная депрессия равна:

T=115,2 - 100=15,2 °С

Вычисляем температуру кипения 64%-ного раствора NH4NO3

tкип = tнас. пара+?t*з =103+15,2*1,03 = 118,7 °С,

Подобные документы

    Характеристика выпускаемой продукции, исходного сырья и материалов для производства. Технологический процесс получения аммиачной селитры. Нейтрализация азотной кислоты газообразным аммиаком и выпаривание до состояния высококонцентрированного плава.

    курсовая работа , добавлен 19.01.2016

    Автоматизация производства гранулированной аммиачной селитры. Контуры стабилизации давления в линии подачи сокового пара и регулирования температуры конденсата пара из барометрического конденсатора. Контроль давления в линии отвода к вакуум-насосу.

    курсовая работа , добавлен 09.01.2014

    Аммиачная селитра как распространённое и дешёвое азотное удобрение. Обзор существующих технологических схем его производства. Модернизация производства аммиачной селитры с получением сложного азотно-фосфатного удобрения на ОАО "Череповецкий "Азот".

    дипломная работа , добавлен 22.02.2012

    Описания грануляторов для гранулирования и смешивания сыпучих материалов, увлажненных порошков и паст. Производство комплексных удобрений на основе аммиачной селитры и карбамида. Упрочнение связей между частицами сушкой, охлаждением и полимеризацией.

    курсовая работа , добавлен 11.03.2015

    Назначение, устройство и функциональная схема аммиачной холодильной установки. Построение в термодинамической диаграмме цикла для заданного и оптимального режимов. Определение холодопроизводительности, потребляемой мощности и расхода электроэнергии.

    контрольная работа , добавлен 25.12.2013

    Сущность процесса сушки и описание его технологической схемы. Барабанные атмосферные сушилки, их строение и основной расчёт. Параметры топочных газов, подаваемых в сушилку, автоматическая регулировка влажности. Транспортировка сушильного агента.

    курсовая работа , добавлен 24.06.2012

    Обзор современных методов производства азотной кислоты. Описание технологической схемы установки, конструкция основного аппарата и вспомогательного оборудования. Характеристика исходного сырья и готовой продукции, побочные продукты и отходы производства.

    дипломная работа , добавлен 01.11.2013

    Промышленные способы получения разбавленной азотной кислоты. Катализаторы окисления аммиака. Состав газовой смеси. Оптимальное содержание аммиака в аммиачно-воздушной смеси. Типы азотнокислотных систем. Расчет материального и теплового баланса реактора.

    курсовая работа , добавлен 14.03.2015

    Технологический процесс, нормы технологического режима. Физико-химические свойства диаммоний-фосфата. Технологическая схема. Прием, распределение фосфорной кислоты. Первая и второая стадии нейтрализации фосфорной кислоты. Гранулирование и сушка продукта.

    курсовая работа , добавлен 18.12.2008

    Характеристика исходного сырья, вспомогательных материалов для получения азотной кислоты. Выбор и обоснование принятой схемы производства. Описание технологической схемы. Расчеты материальных балансов процессов. Автоматизация технологического процесса.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образование и науки РФ

Государственное образовательное учреждение

Высшего профессионального образования

«Тверской государственный технический университет»

Кафедра ТПМ

Курсовая работа

по дисциплине: «Общая химическая технология»

Производство аммиачной селитры

  • Содержание

Введение

2. Методы производства

3. Основные стадии производства аммиачной селитры из аммиака и азотной кислоты

3.1 Получение растворов аммиачной селитры

3.1.1 Основы процесса нейтрализации

3. 1 5 Основное оборудование

4. Материальные и энергетические расчеты

5. Термодинамический расчет

6. Утилизация и обезвреживание отходов в производстве аммиачной селитры

Заключение

Список использованных источников

Приложение А

Введение

В природе и в жизни человека азот имеет исключительно важное значение. Он входит в состав белковых соединений (16--18%), являющихся основой растительного и животного мира. Человек ежедневно потребляет 80--100 г белка, что соответствует 12--17 г азота.

Для нормального развития растений требуются многие химические элементы. Основные из них -- углерод, кислород, водород, азот, фосфор, магний, сера, кальций, калий и железо. Первые три элемента растения получают из воздуха и воды, остальные -- извлекают из почвы.

Особенно большая роль в минеральном питании растений принадлежит азоту, хотя его среднее содержание в растительной массе не превышает 1,5%. Без азота не может жить и нормально развиваться ни одно растение.

Азот является составной частью не только растительных белков, но и хлорофилла, с помощью которого растения под действием солнечной энергии усваивают углерод из находящейся в атмосфере двуокиси углерода СО2.

Природные соединения азота образуются вследствие химических процессов разложения органических остатков, при грозовых разрядах, а также биохимическим путем в результате деятельности особых бактерий -- азотобактера, непосредственно усваивающих азот из воздуха. Такой же способностью обладают клубеньковые бактерии, которые живут в корнях бобовых растений (горох, люцерна, бобы, клевер и др.).

Значительное количество азота и других питательных веществ, необходимых для развития сельскохозяйственных культур, ежегодно выносится из почвы с получаемым урожаем. Кроме того, часть питательных веществ теряется в результате вымывания их грунтовыми и дождевыми водами. Поэтому для предотвращения снижения урожайности и истощения почвы требуется пополнять ее питательными веществами путем внесения различных видов удобрений.

Известно, что почти каждое удобрение обладает физиологической кислотностью или щелочностью. В зависимости от этого оно может оказывать на почву подкисляющее или подщелачивающее действие, что учитывается при его использовании под определенные сельскохозяйственные культуры.

Удобрения, щелочные катионы которых быстрее извлекаются растениями из почвы, вызывают ее подкисление; растения, которые быстрее потребляют кислотные анионы удобрений, способствуют подщелачиванию почвы.

Азотные удобрения, содержащие катион аммония NН4 (аммиачная селитра, сульфат аммония) и амидную группу NН2 (карбамид), подкисляют почву. Подкисляющее действие аммиачной селитры слабее, чем сульфата аммония.

В зависимости от характера почвы, климатических и других условий под различные культуры требуется вносить различное количество азота.

В ассортименте азотных удобрений значительное место занимает аммиачная селитра (нитрат аммония, или азотнокислый аммоний), объем мирового производства которой исчисляется миллионами тонн в год.

В настоящее время примерно 50% азотных удобрений, применяемых в сельском хозяйстве нашей страны, приходится на долю аммиачной селитры.

Аммиачная селитра имеет ряд преимуществ перед другими азотными удобрениями. Она содержит 34--34,5% азота и в этом отношении уступает только карбамиду СО(NН2) 2, содержащему 46% азота. Другие азотные и азотсодержащие удобрения имеют значительно меньше азота (содержание азота приведено в пересчете на сухое вещество):

Таблица 1 - Содержание азота в соединениях

Аммиачная селитра является универсальным азотным удобрением, так как одновременно содержит аммиачную и нитратную формы азота. Она эффективна во всех зонах, почти под все сельскохозяйственные культуры.

Весьма важно, что формы азота аммиачной селитры используются растениями в разное время. Аммонийный азот, непосредственно участвующий в синтезе белка, быстро усваивается растениями в период роста; нитратный азот усваивается относительно медленно, поэтому действует более продолжительное время. Установлено также, что аммиачная форма азота может использоваться растениями без предварительного окисления.

Эти свойства аммиачной селитры весьма положительно сказываются на увеличении урожайности почти всех сельскохозяйственных культур.

Высокое содержание азота в аммиачной селитре, сравнительно несложный способ ее получения и относительно невысокая стоимость в ней единицы азота создают хорошие предпосылки для дальнейшего развития этого производства.

Аммиачная селитра входит в состав большой группы устойчивых взрывчатых веществ. Взрывчатые вещества на основе аммиачной селитры и аммиачная селитра чистая или обработанная некоторыми добавками применяются для взрывных работ.

Небольшое количество селитры расходуется на получение закиси азота, используемой в медицине.

Наряду с увеличением объема производства аммиачной селитры путем модернизации действующих и строительства новых производств осуществляются мероприятия по дальнейшему улучшению качества готового продукта (получение продукта 100%-ной рассыпчатости и сохранение гранул после длительного хранения продукта) .

1. Физико-химические свойства аммиачной селитры

В чистом виде аммиачная селитра представляет собой белое кристаллическое вещество, содержащее 35% азота, 60% кислорода и 5% водорода. Технический продукт -- белого цвета с желтоватым оттенком, содержит не менее 34,2% азота.

Аммиачная селитра является сильным окислителем ряда неорганических и органических соединений. С расплавами некоторых веществ она бурно реагирует вплоть до взрыва (например, с нитритом натрия NaNO2).

Если над твердой аммиачной селитрой пропускать газообразный аммиак, то быстро образуется весьма подвижная жидкость -- аммиакат 2NH4NO3*2NH3 или NH4NO3*3NH3.

Аммиачная селитра хорошо растворяется в воде, этиловом и метиловом спиртах, пиридине, ацетоне и в жидком аммиаке. С повышением температуры растворимость аммиачной селитры значительно возрастает , .

При растворении аммиачной селитры в воде поглощается большое количество тепла. Например, при растворении 1 моль кристаллической NH4NO3в 220--400 моль воды и температуре 10--15 °С происходит поглощение 6,4 ккал тепла.

Аммиачная селитра обладает свойством сублимироваться. При хранении аммиачной селитры в условиях повышенных температуры и влажности воздуха ее объем увеличивается примерно вдвое, что обычно приводит к разрыву тары.

Под микроскопом на поверхности гранул аммиачной селитры отчетливо видны поры и трещины. Повышенная пористость гранул селитры весьма отрицательно сказывается на физических свойствах готового продукта.

Аммиачная селитра отличается высокой гигроскопичностью. На открытом воздухе в тонком слое селитра весьма быстро увлажняется, теряет кристаллическую форму и начинает расплываться. Степень поглощения солью влаги из воздуха зависит от его влажности и давления паров над насыщенным раствором данной соли при данной температуре.

Между воздухом и гигроскопичной солью происходит влагообмен. Решающее влияние на этот процесс оказывает относительная влажность воздуха.

Кальциевая и известково-аммиачная селитры имеют сравнительно низкое давление водяных паров над насыщенными растворами; при определенной температуре им соответствует наиболее низкая относительная влажность воздуха. Это самые гигроскопичные соли среди указанных выше азотных удобрений. Наименее гигроскопичен сульфат аммония и практически совершенно негигроскопична калиевая селитра.

Влага поглощается только сравнительно небольшим слоем соли, непосредственно граничащим с окружающим воздухом. Однако даже такое увлажнение селитры сильно ухудшает физические свойства готового продукта. Скорость поглощения аммиачной селитрой влаги из воздуха с повышением его температуры резко увеличивается. Так, при 40 °С скорость поглощения влаги в 2,6 раза больше, чем при 23 °С.

Предложено много способов уменьшения гигроскопичности аммиачной селитры. Один из таких способов основан на смешении или сплавлении аммиачной селитры с другой солью. При выборе второй соли исходят из следующего правила: для понижения гигроскопичности давление водяных паров над насыщенным раствором смеси солей должно быть больше их давления над насыщенным раствором чистой аммиачной селитры.

Установлено, что гигроскопичность смеси двух солей, имеющих общий ион, больше, чем наиболее гигроскопичной из них (исключение составляют смеси или сплавы аммиачной селитры с сульфатом аммония и некоторые другие). Смешение же аммиачной селитры с негигроскопичными, но нерастворимыми в воде веществами (например, с известняковой пылью, фосфоритной мукой, дикальцийфосфатом и др.) не уменьшает ее гигроскопичности. Многочисленные опыты показали, что все соли, которые имеют такую же или большую растворимость в воде, чем аммиачная селитра, обладают свойством увеличивать ее гигроскопичность.

Соли же, способные уменьшать гигроскопичность аммиачной селитры, приходится добавлять в больших количествах (например, сульфат калия, хлористый калий, диаммонийфосфат), что резко снижает содержание в продукте азота.

Наиболее эффективным способом уменьшения поглощения влаги из воздуха является покрытие частиц селитры защитными пленками из не смачиваемых водой органических веществ. Защитная пленка в 3--5 раз снижает скорость поглощения влаги и способствует улучшению физических свойств аммиачной селитры.

Отрицательным свойством аммиачной селитры является ее способность слеживаться -- терять при хранении сыпучесть (рассыпчатость). При этом аммиачная селитра превращается в твердую монолитную массу, с трудом поддающуюся измельчению. Слеживаемость аммиачной селитры вызывается многими причинами.

Повышенное содержание влаги в готовом продукте. В частицах аммиачной селитры любой формы всегда содержится влага в виде насыщенного (маточного) раствора. Содержание NH4NO3 в таком растворе соответствует растворимости соли при температурах ее загрузки в тару. Во время остывания готового продукта маточный раствор часто переходит в пересыщенное состояние. При дальнейшем понижении температуры из пересыщенного раствора выпадает большое количество кристаллов размерами 0,2-- 0,3 мм. Эти новые кристаллы цементируют ранее не связанные частицы селитры, что приводит к превращению ее в плотную массу.

Низкая механическая прочность частиц селитры. Аммиачная селитра выпускается в виде частиц округлой формы (гранул), пластинок или мелких кристаллов. Частицы гранулированной аммиачной селитры имеют меньшую удельную поверхность и более правильную форму, чем чешуйчатой и мелкокристаллической, поэтому гранулы меньше слеживаются. Однако в процессе гранулирования образуется некоторое количество пустотелых частиц, отличающихся низкой механической прочностью.

При складировании мешки с гранулированной селитрой укладывают в штабеля высотой 2,5 м. Под давлением верхних мешков происходит разрушение наименее прочных гранул с образованием пылевидных частиц, которые уплотняют массу селитры, увеличивая ее слеживаемость. Практика показывает, что разрушение пустотелых частиц в слое гранулированного продукта резко ускоряет процесс его слеживания. Это наблюдается даже если при загрузке в тару продукт был охлажден до 45 °С и основная масса гранул имела хорошую механическую прочность. Установлено, что пустотелые гранулы разрушаются также вследствие рекристаллизации.

При повышении температуры окружающего воздуха гранулы селитры почти полностью теряют свою прочность, и такой продукт сильно слеживается.

Термическое разложение аммиачной селитры. Взрывоопасность. Огнестойкость. Аммиачная селитра с точки зрения взрывобезопасности относительно мало чувствительна к толчкам, трению, ударам, сохраняет устойчивость при попадании искр различной интенсивности. Примеси песка, стекла и металлические примеси не повышают чувствительности аммиачной селитры к механическим воздействиям. Она способна взрываться только под действием сильного детонатора или при термическом разложении в определенных условиях.

При продолжительном нагревании аммиачная селитра постепенно разлагается на аммиак и азотную кислоту:

NH4NO3=NH3+HNO3 - 174598,32 Дж (1)

Этот процесс, протекающий с поглощением тепла, начинается при температуре выше 110°С.

При дальнейшем нагревании происходит разложение аммиачной селитры с образованием закиси азота и воды:

NH4NO3= N2О + 2Н2О + 36902,88 Дж (2)

Термическое разложение аммиачной селитры протекает по таким последовательным стадиям:

· гидролиз (или диссоциация) молекул NH4NO3;

· термическое разложение азотной кислоты, образующейся при гидролизе;

· взаимодействие двуокиси азота и аммиака, образующихся на первых двух стадиях.

При интенсивном нагревании аммиачной селитры до 220--240 °С ее распад может сопровождаться вспышками расплавленной массы.

Весьма опасен нагрев аммиачной селитры в замкнутом объеме или в объеме с ограниченным выходом газов, образующихся при термическом разложении селитры.

В этих случаях разложение аммиачной селитры может протекать по многим реакциям, в частности, по следующим:

NH4NO3 = N2+2Н2О + Ѕ 02 + 1401,64 Дж/кг (3)

2NH4NO3 = N2 +2NO+ 4Н20 + 359,82 Дж/кг (4)

ЗNH4NO3= 2N2 + N0 + N02 + 6Н20 + 966,50 Дж/кг (5)

Из приведенных выше реакций видно, что аммиак, образующийся в начальный период термического разложения селитры, часто отсутствует в газовых смесях; в них протекают вторичные реакции, в ходе которых аммиак полностью окисляется до элементарного азота. В результате вторичных реакций резко увеличивается давление газовой смеси в замкнутом объеме и процесс разложения может закончиться взрывом.

Медь, сульфиды, магний, колчедан и некоторые другие примеси активируют процесс разложения аммиачной селитры при ее нагревании. В результате взаимодействия этих веществ с нагретой селитрой образуется неустойчивый нитрит аммония, который при 70--80 °С бурно разлагается со взрывом:

NH4NO3=N2+ 2Н20 (6)

С железом, оловом и алюминием аммиачная селитра не реагирует даже в расплавленном состоянии.

С повышением влажности и увеличением размера частиц аммиачной селитры чувствительность ее к взрыву сильно уменьшаетcя. В присутствии примерно 3% влаги селитра становится нечувствительной к взрыву даже при действии сильного детонатора.

Термическое разложение аммиачной селитры с повышением давления до определенного предела усиливается. Установлено, что при давлении около 6 кгс/см2 и соответствующей температуре происходит распад всей расплавленной селитры.

Решающее значение для уменьшения или предотвращения термического разложения аммиачной селитры имеет поддержание щелочной среды при упаривании растворов. Поэтому в новой технологической схеме производства неслеживающейся аммиачной селитры целесообразно добавлять к горячему воздуху небольшое количество аммиака.

Учитывая, что в определенных условиях аммиачная селитра может являться взрывоопасным продуктом, в процессе ее производства, при хранении и перевозке следует строго соблюдать установленный технологический режим и правила по технике безопасности.

Аммиачная селитра относится к негорючим продуктам. Поддерживает горение только закись азота, образующаяся при термическом разложении соли.

Смесь аммиачной селитры с измельченным древесным углем при сильном нагревании способна самовоспламеняться. Некоторые легко окисляемые металлы (например, порошкообразный цинк) в контакте с влажной аммиачной селитрой при небольшом нагреве также могут вызвать ее воспламенение. В практике наблюдались случаи самопроизвольного воспламенения смесей аммиачной селитры с суперфосфатом.

Бумажные мешки или деревянные бочки, в которых находилась аммиачная селитра, могут загораться даже под действием солнечных лучей. При возгорании тары с аммиачной селитрой возможно выделение окислов азота и паров азотной кислоты. При пожарах, возникающих от открытого пламени или вследствие детонации, аммиачная селитра расплавляется и частично разлагается. В глубину массы селитры пламя не распространяется , .

2 . Методы производства

аммиачный селитра нейтрализация кислота

В промышленности широко применяется только метод получения аммиачной селитры из синтетического аммиака (или аммиаксодержащих газов) и разбавленной азотной кислоты.

Производство аммиачной селитры из синтетического аммиака (или аммиаксодержащих газов) и азотной кислоты является многостадийным. В связи с этим пытались получать аммиачную селитру непосредственно из аммиака, окислов азота, кислорода и паров воды по реакции

4NH3 + 4NO2 + 02 + 2Н20 = 4NH4NO3 (7)

Однако от этого способа пришлось отказаться, так как наряду с аммиачной селитрой образовывался нитрит аммония -- неустойчивый и взрывоопасный продукт.

В производство аммиачной селитры из аммиака и азотной кислоты внедрен ряд усовершенствований, которые позволили сократить капитальные затраты на строительство новых установок и уменьшить себестоимость готового продукта.

Для коренного усовершенствования производств аммиачной селитры потребовалось отказаться от сложившихся в течение многих лет представлений о невозможности работать без соответствующих резервов основного оборудования (например, выпарных аппаратов, грануляционных башен и др.), об опасности получения для гранулирования почти безводного плава аммиачной селитры.

В России и за рубежом твердо установлено, что только строительство агрегатов большой мощности, с использованием современных достижений науки и техники, может дать существенные экономические преимущества по сравнению с действующими производствами аммиачной селитры.

Значительное количество аммиачной селитры в настоящее время производится из отходящих аммиаксодержащих газов некоторых систем синтеза карбамида. По одному из способов его производства на 1 т карбамида получается от 1 до 1,4 т аммиака. Из такого количества аммиака можно выработать 4,6--6,5 т аммиачной селитры. Хотя работают и более совершенные схемы синтеза карбамида, аммиаксодержащие газы -- отходы этого производства--еще некоторое время будут служить сырьем для получения аммиачной селитры.

Способ производства аммиачной селитры из аммиаксодержащих газов отличается от способа ее получения из газообразного аммиака только на стадии нейтрализации.

В небольших количествах аммиачную селитру получают путем обменного разложения солей (конверсионные способы).

Эти способы получения аммиачной селитры основываются на выпадении одной из образующихся солей в осадок или на получении двух солей с разной растворимостью в воде. В первом случае растворы аммиачной селитры отделяют от осадков на вращающихся фильтрах и перерабатывают в твердый продукт по обычным схемам. Во втором случае растворы упаривают до определенной концентрации и разделяют их дробной кристаллизацией, которая сводится к следующему: при охлаждении горячих растворов выделяют большую часть аммиачной селитры в чистом виде, затем в отдельной аппаратуре проводят кристаллизацию из маточных растворов с получением загрязненного примесями продукта.

Все способы получения аммиачной селитры обменным разложением солей сложны, связаны с большим расходом пара и потерей связанного азота. Их обычно применяют в промышленности только в случае необходимости утилизации соединений азота, получаемых как побочные продукты.

Современный способ производства аммиачной селитры из газообразного аммиака (или аммиаксодержащих газов) и азотной кислоты непрерывно совершенствуется.

3 . Основные стадии производства аммиачной селитры из аммиака и азотной кислоты

Процесс производства аммиачной селитры состоит из следующих основных стадий:

1. Получение растворов аммиачной селитры нейтрализацией азотной кислоты газообразным аммиаком или аммиаксодержащими газами.

2. Упаривание растворов аммиачной селитры до состояния плава.

3. Кристаллизация из плава соли в виде частиц округлой формы (гранул), чешуек (пластинок) и мелких кристаллов.

4. Охлаждение или сушка соли.

5. Упаковка в тару готового продукта.

Для получения малослеживающейся и водоустойчивой аммиачной селитры кроме указанных стадий необходима еще стадия приготовления соответствующих добавок.

3.1 П олучение растворов аммиачной селитры

3.1.1 Основы процесса нейтрализации

Растворы аммиачной селит ры получают в результате взаимодействия аммиака с азотной кислотой по реакции:

4NН3 + НNO3 = NН4NO3 + Q Дж (8)

Образование аммиачной селитры протекает необратимо и сопровождается выделением тепла. Количество тепла, выделяющегося при реакции нейтрализации, зависит от концентрации применяемой азотной кислоты и ее температуры, а также от температуры газообразного аммиака (или аммиаксодержащих газов). Чем выше концентрация азотной кислоты, тем больше выделяется тепла. При этом происходит испарение воды, что позволяет получать более концентрированные растворы аммиачной селитры. Для получения растворов аммиачной селитры применяют 42--58%-ную азотную кислоту.

Применение азотной кислоты концентрацией выше 58% для получения растворов аммиачной селитры при существующем оформлении процесса не представляется возможным, так как в этом случае в аппаратах-нейтрализаторах развивается температура, значительно превышающая температуру кипения азотной кислоты, что может привести к ее разложению с выделением окислов азота. При упаривании растворов аммиачной селитры за счет тепла реакции в аппаратах-нейтрализаторах образуется соковый пар, имеющий температуру 110--120 °С ,.

При получении растворов аммиачной селитры максимально возможной концентрации требуются относительно небольшие теплообменные поверхности выпарных аппаратов, и на дальнейшее упаривание растворов расходуется малое количество свежего пара. В связи с этим вместе с исходным сырьем стремятся подводить в нейтрализатор дополнительное количество тепла, для чего подогревают соковым паром аммиак до 70 °С и азотную кислоту до 60 °С (при более высокой температуре азотной кислоты происходит значительное ее разложение, и трубы подогревателя подвергаются сильной коррозии, если они изготовлены не из титана).

Применяемая в производстве аммиачной селитры азотная кислота должна содержать не более 0,20% растворенных окислов азота. Если кислота недостаточно продута воздухом для удаление растворенных окислов азота, они образуют с аммиаком нитрит аммония, быстро разлагающийся на азот и воду. При этом потери азота могут составить около 0,3 кг на 1 т готового продукта.

В соковом паре, как правило, содержатся примеси NН3, NHО3 и NН4NO3. Количество этих примесей сильно зависит от стабильности давлений, при которых должны подаваться в нейтрализатор аммиак и азотная кислота. Для поддержания заданного давления азотную кислоту подают из напорного бака, снабженного переливной трубой, а газообразный аммиак -- с помощью регулятора давления.

Нагрузка нейтрализатора также в значительной степени определяет потери связанного азота с соковым паром. При нормальной нагрузке потери с конденсатом сокового пара не должны превышать 2 г/л (в пересчете на азот). При превышении нагрузки нейтрализатора между аммиаком и парами азотной кислоты протекают побочные реакции, в результате которых в газовой фазе образуется, в частности, туманообразная аммиачная селитра, загрязняющая соковый пар, и увеличиваются потери связанного азота. Получаемые в нейтрализаторах растворы аммиачной селитры накапливаются в промежуточных емкостях с мешалками, донейтрализуются аммиаком или азотной кислотой, после чего направляется на упаривание.

3.1.2 Характеристика нейтрализационных установок

В зависимости от применя емого давления современные установки для получения растворов аммиачной селитры с использованием тепла нейтрализации подразделяются на установки, работающие при атмосферном давлении; при разрежении (вакууме); при повышенном давлении (несколько атмосфер) и на комбинированные установки, работающие под давлением в зоне нейтрализации и при разрежении в зоне отделения соковых паров от раствора (плава) аммиачной селитры.

Установки, работающие при атмосферном или небольшом избыточном давлении, отличаются простотой технологии и конструктивного оформления. Они также легко обслуживаются, пускаются в работу и останавливаются; случайные нарушения заданного ре-жима работы обычно быстро устраняются. Установки такого типа получили наиболее широкое распространение. Основным аппаратом этих установок является аппарат-нейтрализатор ИТН (использование тепла нейтрализации). Аппарат ИТН работает под абсолютным давлением 1,15--1,25 атм. Конструктивно он оформлен таким образом, что почти не происходит вскипания растворов- с образованием туманообразной аммиачной селитры.

Наличие циркуляции в аппаратах ИТН исключает перегрев в зоне реакции, что позволяет проводить процесс нейтрализации с минимальными потерями связанного азота.

В зависимости от условий работы производства аммиачной селитры соковый пар аппаратов ИТН используется для предварительного упаривания растворов селитры, для испарения жидкого аммиака, подогрева азотной кислоты и газообразного аммиака, направляемых в аппараты ИТН, и для испарения жидкого аммиака при получении газообразного аммиака, применяемого в производстве разбавленной азотной кислоты.

Растворы аммиачной селитры из аммиаксодержащих газов получают на установках, основные аппараты которых работают при разрежении (испаритель) и при атмосферном давлении (скруббер-нейтрализатор). Такие установки громоздки и в них трудно поддерживать стабильный режим работы вследствие непостоянства состава аммиаксодержащих газов. Последнее обстоятельство отрицательно сказывается на точности регулирования избытка азотной кислоты, в результате чего в получаемых растворах аммиачной селитры часто содержится повышенное количество кислоты или аммиака.

Установки нейтрализации, работающие под абсолютным давлением 5--6 атм., мало распространены. Они требуют значительного расхода электроэнергии для сжатия газообразного аммиака и подачи в нейтрализаторы азотной кислоты под давлением. Кроме того, на этих установках возможны повышенные потери аммиачной селитры вследствие уноса брызг растворов (даже в сепараторах сложной конструкции брызги не удается полностью улавливать).

В установках, основанных на комбинированном методе, сочетаются процессы нейтрализации азотной кислоты аммиаком и получения плава аммиачной селитры, который можно непосредственно направлять на кристаллизацию (т. е. из таких установок исключаются выпарные аппараты для концентрирования растворов селитры). Для установок такого типа требуется 58--60%-ная азотная кислота, которую промышленность выпускает пока сравнительно в небольших количествах. Кроме того, часть аппаратуры должна быть выполнена из дорогостоящего титана. Процесс нейтрализации с получением плава селитры приходится проводить при весьма высоких температурах (200--220 °С). Учитывая свойства аммиачной селитры, для осуществления процесса при высоких температурах необходимо создать особые условия, предотвращающие термическое разложение плава селитры.

3.1.3 Установки нейтрализации, работающие при атмосферном давлении

В состав этих установок вхо дят аппараты-нейтрализаторы ИТН (использование теплоты нейтрализации) и вспомогательная аппаратура.

На рисунке 1 изображена одна из конструкций аппарата ИТН, применяемая на многих действующих производствах аммиачной селитры.

З1 - завихритель; ВС1 - внешний сосуд (резервуар); ВЦ1 - внутренний цилиндр (нейтрализационная часть); У1 - устройство для распределения азотной кислоты; Ш1 - штуцер для слива растворов; О1 - окна; У2 - устройство для распределения аммиака; Г1 - гидрозатвор; С1 - сепаратор-ловушка

Рисунок 1 - Аппарат-нейтрализатор ИТН с естественной циркуляцией растворов

Аппарат ИТН представляет собой вертикальный цилиндрический сосуд (резервуар) 2, в котором помещен цилиндр (стакан) 3 с полками 1 (завихритель) для улучшения смешения растворов. В цилиндр 3 подведены трубопроводы для ввода азотной кислоты и газообразного аммиака (реагенты подаются противотоком); трубы заканчиваются устройствами 4 и 7 для лучшего распределения кислоты и газа. Во внутреннем цилиндре происходит взаимодействие азотной кислоты с аммиаком. Этот цилиндр носит название нейтрализационной камеры.

Кольцевое пространство между сосудом 2 и цилиндром 3 служит для циркуляции кипящих растворов аммиачной селитры. В нижней части цилиндра имеются отверстия 6 (окна), соединяющие нейтрализационную камеру с испарительной частью ИТН. Из-за наличия этих отверстий производительность аппаратов ИТН несколько снижается, зато достигается интенсивная естественная циркуляция растворов, что приводит к уменьшению потерь связанного азота.

Выделяющийся из раствора соковый пар отводится через штуцер в крышке аппарата ИТН и через ловушку-сепаратор 9. Образующиеся в цилиндре 3 растворы селитры в виде эмульсии -- смеси с соковым паром поступают в сепаратор через гидрозатвор 5. Из штуцера нижней части ловушки-сепаратора растворы аммиачной селитры направляются в донейтрализатор-мешалку для дальнейшей обработки. Гидрозатвор, имеющийся в испарительной части аппарата, позволяет поддерживать в нем постоянный уровень раствора и препятствует выходу сокового пара без промывки от увлекаемых им брызг раствора.

Паровой конденсат образуется на тарелках сепаратора вследствие частичной конденсации сокового пара. При этом теплота конденсации отводится оборотной водой, проходящей по змеевикам, уложенным на тарелках. В результате частичной конденсации сокового пара получается 15--20%-ный раствор NН4NO3, который направляется на упаривание вместе с основным потоком раствора аммиачной селитры.

На рисунке 2 представлена схема одной из установок нейтрализации, работающих при давлении, близком к атмосферному.

НБ1 - напорный бак; С1 - сепаратор; И1 - испаритель; П1 - подогреватель; СК1 - сборник для конденсата; ИТН1 - аппарат ИТН; М1 - мешалка; ЦН1 - центробежный насос

Рисунок 2 - Схема установки нейтрализации, работающей при атмосферном давлении

Чистая или с добавками азотная кислота подается в напорный бак снабженный постояннодействующим переливом избытка кислоты в хранилище.

Из напорного бака 1 азотная кислота направляется непосредственно в стакан аппарата ИТН 6 или через подогреватель (на рисунке не показан), где нагревается теплом сокового пара, отводимого через сепаратор 2.

Газообразный аммиак поступает в испаритель 3 жидкого аммиака, затем в подогреватель 4, где нагревается теплом вторичного пара из расширителя или горячим конденсатом греющего пара выпарных аппаратов, и далее направляется по двум параллельным трубам в стакан аппарата ИТН 6.

В испарителе 3 брызгоунос жидкого аммиака испаряется и происходит отделение загрязнений, обычно сопутствующих газообразному аммиаку. При этом образуется слабая аммиачная вода с примесью смазочного масла и катализаторной пыли цеха синтеза аммиака.

Получаемый в нейтрализаторе раствор аммиачной селитры через гидравлический затвор и брызгоуловитель-ловушку непрерывно поступает в мешалку-донейтрализатор 7, откуда после нейтрализации избыточной кислоты направляется на упаривание.

Выделяющийся в аппарате ИТН соковый пар, пройдя сепаратор 2, направляется для использования в качестве греющего пара в выпарные аппараты первой ступени.

Конденсат сокового пара из подогревателя 4 собирается в сборнике 5, откуда расходуется на разные производственные нужды.

Перед пуском нейтрализатора выполняются подготовительные работы, предусмотренные в рабочих инструкциях. Отметим только некоторые из подготовительных работ, связанных с нормальным ведением процесса нейтрализации и с обеспечением техники безопасности.

Прежде всего, требуется залить в нейтрализатор раствор аммиачной селитры или паровой конденсат до пробоотборного краника.

Затем необходимо наладить непрерывную подачу азотной кислоты в напорный бак и ее перелив в складское хранилище склада. После этого требуется принять газообразный аммиак из цеха синтеза аммиака, для чего необходимо на короткое время открыть задвижки на линии отвода в атмосферу сокового пара и вентиль выхода раствора в мешалку-донейтрализатор. Этим предупреждается создание в аппарате ИТН повышенного давления и образование небезопасной аммиачно-воздушной смеси при пуске аппарата.

В этих же целях до пуска нейтрализатор и взаимосвязанная с ним коммуникация продуваются паром.

После достижения нормального режима работы соковый пар из аппарата ИТН направляется на использование в качестве греющего пара,].

3.1.4 Установки нейтрализации, работающие при разрежении

Совместная переработка амм иаксодержащих газов и газообразного аммиака нецелесообразна, так как связана с большими потерями аммиачной селитры, кислоты и аммиака из-за наличия в аммиаксодержащих газах значительного количества примесей (азот, метан, водород и др.)- Эти примеси, барботируя через образующиеся кипящие растворы аммиачной селитры, уносили бы с соковым паром связанный азот. Кроме того, соковый пар, загрязненный примесями, нельзя было бы использовать в качестве греющего пара. Поэтому аммиаксодержащие газы, как правило, перерабатывают отдельно от газообразного аммиака.

В установках, работающих при разрежении, использование тепла реакции осуществляется вне нейтрализатора-- в вакуум-испарителе. Здесь горячие растворы аммиачной селитры, поступающие из нейтрализатора, кипят при температуре, соответствующей вакууму в аппарате. В состав таких установок входят: нейтрализатор скрубберного типа, вакуум-испаритель и вспомогательное оборудование.

На рисунке 3 представлена схема установки нейтрализации, работающей с применением вакуум-испарителя.

НР1 - нейтральзатор скрубберного типа; Н1 - насос; В1 - вакуум-испаритель; В2 - вакуум-сепаратор; НБ1 - напорный бак азотной кислоты; Б1 - бак (затворсмеситель); П1 - промыватель; ДН1 - донейтрализатор

Рисунок 3 - Схема установки нейтрализации с вакуум-испарителем

Аммиаксодержащие газы при температуре 30--90 °С под давлением 1,2--1,3 атм подаются в нижнюю часть скруббера-нейтрализатора 1. В верхнюю часть скруббера из бака- затвора 6 поступает циркуляционный раствор селитры, в который обычно непрерывно подается из бака 5 азотная кислота, иногда предварительно нагретая до температуры не выше 60 °С. Процесс нейтрализации проводится при избытке кислоты в пределах 20-50 г/л. В скруббере 1 обычно поддерживается температура на 15--20 °С ниже температуры кипения растворов, что позволяет предотвращать разложение кислоты и образование тумана аммиачной селитры. Заданная температура поддерживается благодаря орошению скруббера раствором из вакуум-испарителя, который работает при разрежении 600 мм рт. ст., поэтому раствор в нем имеет более низкую температуру, чем в скруббере.

Получаемый в скруббере раствор селитры засасывается в вакуум-испаритель 5, где при разрежении 560--600 мм рт. ст. происходит частичное испарение воды (упаривание) и повышение концентрации раствора.

Из вакуум-испарителя раствор стекает в бак-гидрозатвор 6, откуда большая его часть снова поступает на орошение скруббера 1, а остальное количество направляется в донейтрализатор 8. Соковый пар, образующийся в вакуум-испарителе 3, через вакуум-сепаратор 4 направляется в поверхностный конденсатор (на рисунке не показан) или в конденсатор смесительного типа. В первом случае конденсат сокового пара используется в производстве азотной кислоты, во втором -- для различных других целей. Разрежение в вакуум-испарителе создается благодаря конденсации сокового пара. Несконденсировавшиеся пары и газы отсасываются из конденсаторов вакуум-насосом и отводятся в атмосферу.

Отработанные газы из скруббера 1 поступают в аппарат 7, где промываются конденсатом для удаления капель раствора селитры, после чего также удаляются в атмосферу. В мешалке-донейтрализаторе растворы нейтрализуются до содержания 0,1--0,2 г/л свободного аммиака и вместе с потоком раствора селитры, полученного в аппаратах ИТН, направляются на упаривание.

На рисунке 4 представлена более совершенная схема вакуум-нейтрализации.

ХК1 - холодильник-конденсатор; СН1 - скруббер-нейтрализатор; С1, С2 - сборники; ЦН1, ЦН2, ЦН3 - центробежные насосы; П1 - промыватель газов; Г1 - гидрозатвор; Л1 - ловушка; В1 - вакуум-испаритель; БД1 - бак-донейтрализатор; В2 - вакуум-насос; П2 - промыватель сокового аппарата; К1 - конденсатор поверхностный

Рисунок 4 - Схема вакуум-нейтрализации:

Газы дистилляции направляются в нижнюю часть скруббера нейтрализатора 2, орошаемого раствором из сборника 3 с помощью циркуляционного насоса 4.

В сборник 3 через гидрозатвор 6 поступают растворы из скруббера-нейтрализатора 2, а также растворы после ловушки вакуум-испарителя 10 и промывателя сокового пара 14.

Через напорный бак (на рисунке не показан) азотная кислота раствор из промывателя газов 5, орошаемого конденсатом сокового пара, непрерывно поступают в сборник 7. Отсюда растворы циркуляционным насосом 8 подаются в промыватель 5, пройдя который возвращаются в сборник 7.

Горячие газы после промывателя 5 охлаждаются в холодильнике-конденсаторе 1 и выбрасываются в атмосферу.

Горячие растворы аммиачной селитры из гидрозатвора 6 засасываются с помощью вакуум-насоса 13 в вакуум-испаритель 10, где концентрация NH4NO3 увеличивается на несколько процентов.

Выделяющиеся в вакуум-испарителе 10 соковые пары, пройдя ловушку 9, промыватель 14 и поверхностный конденсатор 15, вакуум-насосом 13 выбрасываются в атмосферу.

Раствор аммиачной селитры с заданной кислотностью отводится из нагнетательной линии насоса 4 в бак-донейтрализатор. Здесь раствор нейтрализуется газообразным аммиаком и насосом 12 направляется на выпарную станцию.

3.1. 5 Основное оборудование

Нейтрализаторы ИТН. Применяется несколько типов нейтрализаторов, отличающихся главным образом размерами и конструкцией устройств для распределения аммиака и азотной кислоты внутри аппарата. Часто применяются аппараты следующих размеров: диаметр 2400 мм, высота 7155 мм, стакан -- диаметр 1000 мм, высота 5000 мм. Эксплуатируются также аппараты диаметром 2440 мм и высотой 6294 мм и аппараты, из которых удалена ранее предусмотренная мешалка (рисунок 5).

ЛК1 - люк; П1 - полки; Л1 - линия для отбора проб; Л2 - линия вывода растворов; ВС1 - внутренний стакан; С1 - сосуд внешний; Ш1 - штуцер для слива растворов; Р1 - распределитель аммиака; Р2 - распределитель азотной кислоты

Рисунок 5 - Аппарат-нейтрализатор ИТН

В отдельных случаях для переработки небольших количеств аммиаксодержащих газов используются аппараты ИТН диаметром 1700 мм и высотой 5000 мм.

Подогреватель газообразного аммиака -- кожухотрубный аппарат из углеродистой стали. Диаметр корпуса 400--476 мм, высота 3500--3280 мм. Трубчатка часто состоит из 121 трубки (диаметр трубки 25x3 мм) с общей поверхностью теплообмена 28 м2. Газообразный аммиак поступает в трубки, а греющий пар или горячий конденсат -- в межтрубное пространство.

Если для обогрева применяется соковый пар из аппаратов ИТН, то подогреватель выполняется из нержавеющей стали 1Х18Н9Т.

Испаритель жидкого аммиака представляет собой аппарат из углеродистой стали, в нижней части которого расположен паровой змеевик, а в средней -- тангенциальный ввод газообразного аммиака.

В большинстве случаев испаритель работает на свежем паре давлением (избыточным) 9 атм. Внизу испарителя аммиака имеется штуцер для периодической продувки от накапливающихся загрязнений.

Подогреватель азотной кислоты -- кожухотрубный аппарат диаметром 400 мм, длиной 3890 мм. Диаметр трубок 25x2 мм, длина 3500 мм; общая поверхность теплообмена 32 м2. Обогрев ведется соковым паром абсолютным давлением 1,2 атм.

Нейтрализатор скрубберного типа -- вертикальный цилиндрический аппарат диаметром 1800--2400 мм, высотой 4700--5150 мм. Применяются также аппараты диаметром 2012 мм и высотой 9000 мм. Внутри аппарата для равномерного распределения циркуляционных растворов по сечению расположено несколько дырчатых тарелок или насадка из керамических колец. В верхней части аппаратов, оборудованных тарелками, уложен слой колец размерами 50x50x3 мм, являющийся отбойником брызг растворов.

Скорость газов в свободном сечении скруббера при диаметре 1700 мм и высоте 5150 мм составляет около 0,4 м/сек. Орошение аппарата скрубберного типа растворами осуществляется при помощи центробежных насосов производительностью 175--250 м3/ч.

Вакуум-испаритель -- вертикальный цилиндрический аппарат диаметром 1000--1200 мм и высотой 5000--3200 мм. Насадка -- керамические кольца размерами 50x50x5 мм, уложенные правильными рядами.

Промыватель газа -- вертикальный цилиндрический аппарат из нержавеющей стали диаметром 1000 мм, высотой 5000 мм. Насадка-- керамические кольца размерами 50x50x5 мм.

Мешалка-донейтрализатор -- цилиндрический аппарат с мешалкой, вращающейся со скоростью 30 об/мин. Привод осуществляется от электродвигателя через редуктор (рисунок 6).

Ш1 - штуцер для установки измерителя уровня; В1 - воздушник; Э1 - электродвигатель; Р1 - редуктор; ВМ1 - вал мешалки; Л1 - лаз

Рисунок 6 - Мешалка-донейтрализатор

Диаметр часто применяемых аппаратов 2800 мм, высота 3200 мм. Они работают под атмосферным давлением, служат для донейтрализации растворов аммиачной селитры и в качестве промежуточных емкостей для растворов, направляемых на упаривание.

Поверхностный конденсатор -- вертикальный кожухотрубный двухходовой (по воде) теплообменник, предназначенный для конденсации сокового пара, поступающего из вакуум-испарителя. Диаметр аппарата 1200 мм, высота 4285 мм; поверхность теплопередачи 309 м2. Он работает при разрежении примерно 550-- 600 мм рт. ст.; имеет трубки: диаметр 25x2 мм, длина 3500 м общее число 1150 шт.; вес такого конденсатора -- около 7200 Кг

В отдельных случаях для ликвидации выбросов в атмосферу сокового пара, сбрасываемого при продувках из выпарных аппаратов, ловушек аппаратов ИТН и гидрозатворов, устанавливается поверхностный конденсатор со следующей характеристикой: диаметр корпуса 800 мм, высота 4430 мм, общее количество трубок 483 шт., диаметр 25x2, общая поверхность 125 м2.

Вакуум-насосы. Применяются разные типы насосов. Насос типа ВВН-12 имеет производительность 66 м3/ч, скорость вращения вала 980 об/мин. Насос предназначен для создания вакуума в вакуум-нейтрализационной установке.

Центробежные насосы. Для циркуляции раствора аммиачной селитры на установке вакуум-нейтрализации часто применяются насосы марки 7ХН-12 производительностью 175--250 м3/ч. Установочная мощность электродвигателя 55 квт .

4 . Материальные и энергетические расчеты

Произведем расчет материального и теплового баланса процесса. Расчеты нейтрализации азотной кислоты газообразным аммиаком выполняю на 1 т продукта. Исходные данные беру из таблицы 2, используя методику пособий , , .

Принимаем, что процесс нейтрализации будет протекать в следующих условиях:

Начальная температура, °С

газообразного аммиака...........................................................................50

азотной кислоты......................................................................................20

Таблица 2 - Исходные данные

Материальный расчет

1 Для получения 1 т селитры по реакции:

NH3+HNO3=NH4NO3 +Q Дж (9)

теоретически требуется следующее количество сырья (в кг):

аммиака

17 - 80 х = 1000*17/80 = 212,5

х - 1000

азотной кислоты

63 - 80 х = 1000*63/80 = 787,5

х - 1000

Где 17, 63 и 80 - молекулярные массы аммиака, азотной кислоты и аммиачной селитры соответственно.

Практический расход NH3 и HNO3 несколько выше теоретического, так как в процессе нейтрализации неизбежны потери реагентов с соковым паром через неплотности коммуникаций вследствие небольшого разложения реагирующих компонентов и селитры и т.д.

2. Определим количество аммиачной селитры в товарном продукте: 0,98*1000=980 кг/ч

или

980/80=12,25 кмоль/ч,

а также количество воды:

1000-980=20 кг/ч

3. Рассчитаю расход азотной кислоты (100%-ной) на получение 12,25 кмоль/ч селитры. По стехиометрии ее расходуется столько же (кмоль/ч), сколько образовалось селитры: 12,25 кмоль/ч, или 12,25*63=771, 75 кг/ч

Поскольку в условиях задана полная (100%-ная) конверсия кислоты, это и будет ее поданное количество.

В процессе участвует разбавленная кислота - 60%-ная:

771,75/0,6=1286,25 кг/ч,

в том числе воды:

1286,25-771,25=514,5 кг/ч

4. Аналогично, расход аммиака (100%-ного) на получение 12,25 кмоль/ч, или 12,25*17=208,25 кг/ч

В пересчете на 25%-ную аммиачную воду это составит 208,25/0,25= 833 кг/ч, в том числе воды 833-208,25=624,75 кг/ч.

5. Найду общее количество воды в нейтрализаторе, поступившее с реагентами:

514,5+624,75=1139,25 кг/ч

6. Определим количество водяного пара, образовавшегося про упаривании раствора селитры (20 кг/ч остается в товарном продукте): 1139,25 - 20=1119,25 кг/ч.

7. Составим таблицу материального баланса процесса производства аммиачной селитры.

Таблица 3 - Материальный баланс процесса нейтрализации

8. Рассчитаем технологически показатели.

· теоретические расходные коэффициенты:

по кислоте - 63/80=0,78 кг/кг

по аммиаку - 17/80=0,21 кг/кг

· фактические расходные коэффициенты:

по кислоте - 1286,25/1000=1,28 кг/кг

по аммиаку - 833/1000=0,83 кг/кг

В процессе нейтрализации проходила только одна реакция, конверсия сырья равняла 1 (т.е. произошло полное превращение),потери отсутствовали, значит фактически выход равен теоретическому:

Qф/Qт*100=980/980*100=100%

Энергетический расчет

Приход тепла. В процессе нейтрализации приход тепла складывается из тепла, вносимого аммиаком и азотной кислотой, и тепла, выделяющегося при нейтрализации.

1. Тепло, вносимое газообразным аммиаком, составляет:

Q1=208,25*2,18*50=22699,25 кДж,

где 208,25 - расход аммиака, кг/ч

2,18 - теплоемкость аммиака, кДж/(кг*°С)

50 - температура аммиака, °С

2. Тепло вносимое азотной кислотой:

Q2=771,75*2,76*20=42600,8 кДж,

где 771,25 - расход азотной кислоты, кг/ч

2,76 - теплоемкость азотной кислоты, кДж/(кг*°С)

20 - температура кислоты, °С

3. Теплоту нейтрализации предварительно рассчитывают на 1 моль образующейся аммиачной селитры по уравнению:

HNO3*3,95H2O(жидк) +NH3(газ) =NH4NO3*3,95H2O(жидк)

где HNO3*3,95H2O соответствует азотной кислоте.

Тепловой эффект Q3 этой реакции находим из следующих величин:

а) теплота растворения в воде азотной кислоты:

HNO3+3,95 H2O=HNO3*3,95H2O (10)

б) теплота образования твердого NH4NO3 из 100%-ной азотной кислоты и 100%-ного аммиака:

HNO3 (жидк) +NH3(газ) =NH4NO3(тв) (11)

в) теплота растворения аммиачной селитры в воде с учетом расхода реакционного тепла на упаривание получаемого раствора от 52,5% (NH4NO3 *H2O) до 64% (NH4NO3 *2,5H2O)

NH4NO3 +2,5H2O= NH4NO3*2,5H2O, (12)

где NH4NO3*4H2O соответствует концентрации 52,5% NH4NO3

Величина NH4NO3*4H2O рассчитывается из соотношения

80*47,5/52,5*18=4H2O,

где 80 - молярный вес NH4NO3

47,5 - концентрация HNO3 , %

52,5 - концентрация NH4NO3 , %

18 - молярный вес H2O

Аналогично рассчитывается величина NH4NO3*2,5H2O, соответствующая 64%-ному раствору NH4NO3

80*36/64*18=2,5H2O

По реакции (10) теплота растворения q азотной кислоты в воде равна 2594,08 Дж/моль. Для определения теплового эффекта реакции (11) требуется из теплоты образования нитрата аммония вычесть сумму теплот образования NH3(газ) и HNO3 (жидк).

Теплота образования этих соединений из простых веществ при 18°С и 1 атм имеет следующие значения (в Дж/моль):

NH3(газ):46191,36

HNO3 (жидк):174472,8

NH4NO3(тв):364844,8

Общий тепловой эффект химического процесса зависит только от теплот образования исходных взаимодействующих веществ и конечных продуктов. Из этого следует, что тепловой эффект реакции (11) составит:

q2=364844,8-(46191,36+174472,8)=144180,64 Дж/моль

Теплота q3 растворения NH4NO3 по реакции (12) равна 15606,32 Дж/моль.

Растворение NH4NO3 в воде протекает с поглощение тепла. В связи с этим теплота растворения принимается в энергетическом балансе со знаком минус. Концентрирование же раствора NH4NO3 протекает соответственно с выделением тепла.

Таким образом, тепловой эффект Q3 реакции

HNO3 +*3,95H2O(жидк)+ NH3(газ) =NH4NO3*2,5H2O(жидк)+1.45 H2O(пар)

составит:

Q3=q1+q2+q3= -25940,08+144180,64-15606,32=102633,52 Дж/моль

При выработке 1 т аммиачной селитры тепло реакции нейтрализации составит:

102633,52*1000/80=1282919 кДж,

где 80 - молекулярный вес NH4NO3

из приведенных выше расчетов видно, что суммарный приход тепла составит: с аммиаком 22699,25, с азотной кислотой 42600,8, за счет тепла нейтрализации 1282919 и всего 1348219,05 кДж.

Расход тепла. При нейтрализации азотной кислоты аммиаком тепло отводится из аппарата получаемым раствором аммиачной селитры, расходуется на испарение воды из этого раствора и теряется в окружающую среду.

Количество тепла, уносимого раствором аммиачной селитры, составляет:

Q=(980+10)*2,55 tкип,

где 980 - количество раствора аммиачной селитры, кг

10 - потери NH3 и HNO3 ,кг

tкип - температура кипения раствора аммиачной селитры, °С

Температуру кипения раствора аммиачной селитры определяем при абсолютном давлении в нейтрализаторе 1,15 - 1,2 атм; этому давлению соответствует температура насыщенного водяного пара 103 °С. при атмосферном же давлении температура кипения раствора NH4NO3 составляет 115,2 °С. температурная депрессия равна:

?t=115,2 - 100=15,2 °С

Вычисляем температуру кипения 64%-ного раствора NH4NO3

tкип = tнас. пара+?t*з =103+15,2*1,03 = 118,7 °С,

Подобные документы

    Характеристика выпускаемой продукции, исходного сырья и материалов для производства. Технологический процесс получения аммиачной селитры. Нейтрализация азотной кислоты газообразным аммиаком и выпаривание до состояния высококонцентрированного плава.

    курсовая работа , добавлен 19.01.2016

    Автоматизация производства гранулированной аммиачной селитры. Контуры стабилизации давления в линии подачи сокового пара и регулирования температуры конденсата пара из барометрического конденсатора. Контроль давления в линии отвода к вакуум-насосу.

    курсовая работа , добавлен 09.01.2014

    Аммиачная селитра как распространённое и дешёвое азотное удобрение. Обзор существующих технологических схем его производства. Модернизация производства аммиачной селитры с получением сложного азотно-фосфатного удобрения на ОАО "Череповецкий "Азот".

    дипломная работа , добавлен 22.02.2012

    Описания грануляторов для гранулирования и смешивания сыпучих материалов, увлажненных порошков и паст. Производство комплексных удобрений на основе аммиачной селитры и карбамида. Упрочнение связей между частицами сушкой, охлаждением и полимеризацией.

    курсовая работа , добавлен 11.03.2015

    Назначение, устройство и функциональная схема аммиачной холодильной установки. Построение в термодинамической диаграмме цикла для заданного и оптимального режимов. Определение холодопроизводительности, потребляемой мощности и расхода электроэнергии.

    контрольная работа , добавлен 25.12.2013

    Сущность процесса сушки и описание его технологической схемы. Барабанные атмосферные сушилки, их строение и основной расчёт. Параметры топочных газов, подаваемых в сушилку, автоматическая регулировка влажности. Транспортировка сушильного агента.

    курсовая работа , добавлен 24.06.2012

    Обзор современных методов производства азотной кислоты. Описание технологической схемы установки, конструкция основного аппарата и вспомогательного оборудования. Характеристика исходного сырья и готовой продукции, побочные продукты и отходы производства.

    дипломная работа , добавлен 01.11.2013

    Промышленные способы получения разбавленной азотной кислоты. Катализаторы окисления аммиака. Состав газовой смеси. Оптимальное содержание аммиака в аммиачно-воздушной смеси. Типы азотнокислотных систем. Расчет материального и теплового баланса реактора.

    курсовая работа , добавлен 14.03.2015

    Технологический процесс, нормы технологического режима. Физико-химические свойства диаммоний-фосфата. Технологическая схема. Прием, распределение фосфорной кислоты. Первая и второая стадии нейтрализации фосфорной кислоты. Гранулирование и сушка продукта.

    курсовая работа , добавлен 18.12.2008

    Характеристика исходного сырья, вспомогательных материалов для получения азотной кислоты. Выбор и обоснование принятой схемы производства. Описание технологической схемы. Расчеты материальных балансов процессов. Автоматизация технологического процесса.


Федеральное агентство по образованию

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К курсовой работе по общей химической технологии на тему:

«Производство аммиачной селитры. Расчет нейтрализатора производительностью G=10 т/час NH 4 NO 3

Выполнил:
студент гр. ХН-091
Артеменко А.А.
Проверил:
Ушаков А.Г.

Кемерово 2012

Введение 4
1.Технико-экономическое обоснование выбранного способа 7
2.Технологическая схема производства аммиачной селитры 12
3.Расчет материального и теплового балансов нейтрализ ации
азотной кислоты аммиаком 17
3.1.Материальный баланс 17
3.2.Тепловой баланс 20
4.Выбор размеров контактного аппарата 21
Заключение 22
Список использованной литературы 23

Введение

Минеральные удобрения находят широкое применение, как в сельском хозяйстве, так и в различных областях промышленности. В отличие от мирового рынка, именно промышленное потребление азотных удобрений является основным на внутреннем рынке.
Важнейшим видом минеральных удобрений являются азотные: аммиачная селитра, карбамид, сульфат аммония, водные растворы аммиака.
Аммиачная селитра, или нитрат аммония, NH 4 NO 3 – кристаллическое вещество белого цвета, содержащее 35% азота в аммонийной и нитратной формах, обе формы легко усваиваются растениями .
Основными потребителями аммиачной селитры являются следующие отрасли:
- сельское хозяйство;
- производство сложных минеральных удобрений;
- горнопромышленный комплекс (собственное производство ВВ);
- угольная промышленность (собственное производство ВВ);
- производство взрывчатых веществ;
- строительная индустрия;
Аммиачная селитра обладает потенциальной, или физиологической кислотностью. Эта кислотность возникает в почве, с одной стороны, в результате более быстрого потребления растениями ионов (NH 4 +) и соответственно накопления кислотного остатка (ионов NO 3) в почве и, с другой стороны, в результате окисления аммиака в азотную кислоту нитрифицирующими микроорганизмами почвы. При длительном применении аммиачной селитры потенциальная кислотность этого удобрения может привести к изменениям химического состава почвы, что в ряде случаев служит причиной снижения урожайности

Сельскохозяйственных культур.
Гранулированную аммиачную селитру применяют больших масштабах перед посевом и для всех видов подкормок. В меньших масштабах ее используют для производства взрывчатых веществ. Аммиачная селитра хорошо растворяется в воде и обладает большой гигроскопичностью (способность поглощать влагу из воздуха). Это является причинного того, что гранулы удобрения расплываются, теряют свою кристаллическую форму, происходит слеживание удобрений – сыпучий материал превращается в
твердую монолитную массу. Нитрат аммония имеет ряд преимуществ перед другими азотными удобрениями, так как содержит 34 % азота и в этом отношение уступает лишь карбамиду .
Кроме того аммиачная селитра содержит одновременно аммиачную и нитратную форму азота, которые используются растениями в разные периоды роста, что положительно складывается на увеличение урожайности почти всех сельскохозяйственных культур.
Отрасли, использующие аммиачную селитру как сырье для производства взрывчатых веществ (ВВ) являются вторым по емкости сегментом ее потребления на внутреннем рынке после сельского хозяйства. Аммиачно-
селитряные ВВ представляют собой большую группу взрывчатых веществ.
Их принято относить к бризантным взрывчатым веществам пониженной мощности (в тротиловом эквиваленте на 25% слабее тротила). Однако это не вполне так. По бризантности аммиачно-селитряные ВВ, как правило, мало в

Чем уступают тротилу, а по фугасности превышают тротил, причем некоторые из них весьма значительно. Аммиачно-селитряные ВВ в большей степени находят применение в народном хозяйстве и в меньшей степени в военном деле. Причиной такого применения является значительно меньшая стоимость аммиачно-селитряных ВВ, их значительно более низкая надежность в применении. Прежде всего, это связано с большой гигроскопичностью аммиачных ВВ, поэтому при увлажнении более 3% такие ВВ полностью теряют способность взрываться. Они подвержены слеживаемости, т.е. теряют при хранении сыпучесть, из-за чего полностью

Или частично теряют взрывную способность.
Важнейшими причинами слеживаемости являются:
1.Повышенное содержание влаги в готовом продукте;
2.Неоднородность и низкая механическая прочность частиц селитры;
3.Изменение кристаллических модификаций аммиачной селитры.
Нитрат аммония – сильный окислитель. С растворами некоторых веществ он реагирует бурно, вплоть до взрыва (нитрит натрия).Малочувствителен к толчкам, трению, ударам, сохраняет устойчивость при попадание искр различной интенсивности. Он способен взрываться только под действием сильного детонатора или при термическом разложении. Селитра не является горючим продуктом. Горение поддерживает только оксид азота. Таким образом одним из условий производства аммиачной селитры является чистота ее исходных растворов и готового продукта .

2.Технологическая схема производства аммиачной селитры

Процесс производства аммиачной селитры состоит из следующих основных стадий:
1.Нейтрализация азотной кислоты газообразным аммиаком;
2.Упаривание растворов аммиачной селитры до состояния плава;
3.Кристаллизация соли из плава;
4.Сушка или охлаждение соли;
5.Упаковка.
Для получения почти неслеживающейся аммиачной селитры применяют ряд технологических приемов. В основе процесса производства аммиачной селитры лежит гетерогенная реакция взаимодействия газообразного аммиака с раствором азотной кислоты:
NH 3 + HNO 3 = NH 4 NO 3 (2)
?H = -144,9 кДж
Тепловой эффект реакции при взаимодействии 100%-ных исходных веществ составляет 35,46 ккал/моль .

Химическая реакция протекает с большой скоростью; в промышленном реакторе она лимитируется растворением газа в жидкости. Для уменьшения диффузионного торможения большое значение имеет перемешивание реагентов. Интенсивные условия проведения процесса в значительной мере могут быть обеспечены при разработке конструкции аппарата. Реакцию (1) проводят в непрерывно действующем аппарате ИТН (использование теплоты нейтрализации) (рис.2.1).

Рис.2.1. Аппарат ИТН

Реактор представляет собой вертикальный цилиндрический аппарат, состоящий из реакционной и сепарационной зон. В реакционной зоне имеется стакан 1, в нижней части которого расположены отверстия для циркуляции раствора. Несколько выше отверстий внутри стакана размещен барботер 2 для подачи газообразного аммиака, над ним – барботер 3 для подачи азотной кислоты. Реакционная парожидкостная смесь выходит из верхней части реакционного стакана; часть раствора выводится из аппарата ИТН и поступает в донейтрализатор, а остальная часть (циркуляционная) вновь идет вниз. Выделившиеся из парожидкостной смеси соковый пар отмывается на колпачковых тарелках 6 от брызг раствора аммиачной селитры и паров азотной кислоты 20 %-ным раствором селитры, а затем конденсатом сокового пара.
Теплота реакции (1) используется для частичного испарения воды из реакционной смеси (отсюда и название аппарата – ИТН). Разница в температурах в разных частях аппарата приводит к более интенсивной циркуляции реакционной смеси.

Технологический процесс производства аммиачной селитры включает, кроме стадий нейтрализации азотной кислоты аммиаком, также стадии упаривания раствора селитры, гранулирования плава, охлаждения гранул, обработка гранул поверхностно-активными веществами, упаковки, хранения и погрузки селитры, очистка газовых выбросов и сточных вод.
На рис.2.2 приведена схема современного крупнотоннажного агрегата по производству аммиачной селитры АС-72 мощностью 1360 т/сут. Исходная 58-60%-ная азотная кислота подогревается в подогревателе 1 до 70-80?С соковым паром из аппарата ИТН 3 и подается на нейтрализацию. Перед аппаратами 3 к азотной кислоте добавляют фосфорную и серную кислоты в таких количествах, чтобы в готовом продукте содержалось 0,3-0,5% Р 2 О 5 и 0,05-0,2% сульфата аммония.
В агрегате установлено два аппарата ИТН, работающие параллельно. Кроме азотной кислоты в них подают газообразный аммиак, предварительно
нагретый в подогревателе 2 паровым конденсатом до 120-130?С. Количества подаваемых азотной кислоты и аммиака регулируют таким образом, чтобы на выходе из аппарата ИТН раствор имел небольшой избыток кислоты (2-5 г/л), обеспечивающий полноту поглощения аммиака.

Рис.2.2 Схема агрегата аммиачной селитры АС-72
В нижней части аппарата происходит реакция нейтрализации при температуре 155-170?С; при этом получается концентрированный раствор, содержащий 91-92% NH 4 NO 3 . В верхней части аппарата водяные пары (так называемый соковый пар) отмываются от брызг аммиачной селитры и паров азотной кислоты. Часть теплоты сокового пара используется на подогрев азотной кислоты. Затем соковый пар направляют на очистку и выбрасывают в атмосферу. Выходящий из нейтрализатора раствор аммиачной селитры имеет слабокислую или слабощелочную реакцию.
Кислый раствор аммиачной селитры направляют в донейтрализатор 4; куда поступает аммиак, необходимый для взаимодействия с оставшейся азотной кислотой. Затем раствор подают в выпарной аппарат 5. Полученный плав, содержащий 99,7-99,8% селитры, при 175?С проходит фильтр 21 и центробежным погружным насосом 20 подается в напорный бак 6, а затем в прямоугольную металлическую грануляционную башню 16.
В верхней части башни расположены грануляторы 7 и 8, в нижнюю часть которых подают воздух, охлаждающий падающие сверху капли селитры. Во время падения капель селитры с высоты 50-55 м при обтекании их потоком воздуха образуются гранулы удобрения. Температура гранулы на

Выходе из башни равна 90-110?С; горячие гранулы охлаждают в аппарате кипящего слоя 15. Это прямоугольный аппарат, имеющий три секции и снабженный решеткой с отверстиями. Под решетку вентиляторами подают воздух; при этом создается псевдоожиженный слой гранул селитры, поступающих по транспортеру из грануляционной башни. Воздух после охлаждения попадает в грануляционную башню.
Гранулы аммиачной селитры транспортером 14 подают на обработку поверхностно-активными веществами во вращающийся барабан 11. Затем готовое удобрение транспортером 12 направляют на упаковку.
Воздух, выходящий из грануляционной башни, загрязнен частицами аммиачной селитры, а соковый пар из нейтрализатора и паровоздушная смесь из выпарного аппарата содержат непрореагировавший аммиак и

Азотную кислоту, а также частицы унесенной аммиачной селитры. Для этих
потоков в верхней башни грануляционной башни расположены шесть
параллельно работающих промывных скрубберов тарельчатого типа 10, орошаемых 20-30%-ным раствором аммиачной селитры, которая подается насосом 18 из сборника 17. Часть этого раствора отводится в нейтрализатор ИТН для промывки сокового пара, а затем подмешивается к аммиачной селитры, и, следовательно, используется для выработки продукции. Очищенный воздух отсасывается из грануляционной башни вентилятором 9 и выбрасывается в атмосферу .

3.Расчет материального и теплового баланса нейтрализации азотной кислоты аммиаком

3.1Материальный баланс

Исходные данные
Концентрация исходной азотной кислоты 50 % HNO 3 ;
Концентрация аммиака 100 % NH 3 ;
Концентрация получаемого раствора 70% NH 4 NO 3 ;
Производительность установки G=10 т/час
В основе получения аммиачной селитры лежит следующая реакция:

NH 3 + HNO 3 = NH 4 NO 3
M(NH 3)=17г/моль
М(NH 4 NO 3)=80г/моль
1.Определим количество прореагировавшего 100%-ного аммиака:
m(NH 3)=17*10000/80=2125 кг/час
М(HNO 3)=63г/моль
2.Определим количество прореагировавшей 100%-ной азотной кислоты:
m(HNO 3)=63*10000/80=7875 кг/час
Тогда количество прореагировавшей 50 % - ной азотной кислоты составляет:
m(HNO 3)= 7875/0,5 = 15750кг/час
Находим общее количество реагентов, поступающих в нейтрализатор:
3.Количество 70 % - ного раствора аммиачной селитры:
m(NH 4 NO 3)= 10000/0,7=14285,7 кг/час
4.Количество испарившейся воды при нейтрализации:
m(H 2 O)= 2125 +15750 – 14285,7=3589,3 кг/час
Расход NH 3 + Расход HNO 3 =Количество NH 4 NO 3 + соковый пар

2125 +15750 = 14285,7+3589,3
17875кг/час=17875кг/час

Результаты расчетов сводим в таблицу:

Таблица 1
Материальный баланс

3.2Тепловой баланс

Исходные данные.
Температура кипения аммиачной селитры 120?С.

Давление в нейтрализаторе 117,68 кПа.
Теплоемкости:

При 30 ?: С НNO3 =2,763 кДж/(м 3 ·?С);
При 50?С:C NH3 =2,185 кДж/ (м 3 ·?С);
При 123,6?С:С NH4NO3 =2,303 кДж/ (м 3 ·?С);

Решение.
Q прих. =Q расх.
Приход теплоты:
1.Теплота, вносимая азотной кислотой:
Q 1 = 15907,5 * 2,763 * 30= 1318572 кДж = 1318,572 МДж;
2.Теплота, поступающая с газообразным аммиаком:
Q 2 = 2146,25 * 2,185 * 50 = 234478кДж =234,478 МДж;
При производстве аммиачной селитры выделяется теплота, которую достаточно точно можно определить графически. Для 50 % азотной кислоты Q=105,09 кДж/моль.
3.При нейтрализации выделяется:
Q 3 = (105,09* 1000 * 10000)/80 = 13136250кДж = 13136,25МДж;
Суммарный приход:
Q прих. = Q 1 + Q 2 + Q 3 = 1318572+234478 +13136250 = 14689300кДж.
Расход теплоты:
1.Раствор аммиачной селитры уносит:
Q 1 " = 14285,7* 2,303 * t кип. ;

При давлении 117,68 кПа, температура насыщенного водяного пара равна 103?С.
Температура кипения воды 100 ?С.
Температурная депрессия равна:
?t = 120 – 100 = 20 ?С;
Определим температуру кипения 70 % раствора аммиачной селитры:
t кип = 103 + 20 * 1,03 = 123,6 ?С;
Q 1 " = 14285,7* 2,303 * 123,6 = 4066436 кДж = 4066,436 МДж.
2.Теплота, расходуемая на испарение воды:
Q 2 " = 3589,3 * 2379,9 = 8542175 кДж = 8542,175МДж.
3.Теплопотери:
Q потерь =Q прих. -Q расх. = 14689300-8542175-4066436= 2080689кДж=2080,689МДж.
Суммарный расход:
Q расх. = Q 1 " + Q 2 "+ Q потерь =4066436+8542175+2080689 =14689300 кДж.

Результаты расчетов сводим в таблицу:

Таблица 2
Тепловой баланс

Приход
Расход
Статья
кДж
%
Статья
кДж
%
Q 1
1318572
8,98
Q 1 "
4066436
27,7
Q 2
234478
1,62
Q 2 "
8542175
58,1
Q 3
13136250
89,4
Q потерь
2080689
14,2
Итого:
14689300
100,00
Итого:
14689300
100,00

1.Технико-экономическое обоснование выбранного способа

Наиболее распространенные способы производства аммиачной селитры основаны на реакции нейтрализации азотной кислоты аммиаком.
Химическое взаимодействие газообразного аммиака и растворов азотной кислоты протекает с большой скоростью, но лимитируется массообменном и гидродинамическими условиями. Поэтому большое значение имеет интенсивность смешения реагентов; которая в основном зависит от соотношения между скоростями движения азотной кислоты и аммиака в реакторе. Наиболее тесное соприкосновение реагентов достигается, если линейная скорость газообразного аммиака превышает линейную скорость раствора азотной кислоты не более чем в 15 раз .
Процесс нейтрализации протекает с выделением тепла. В производственных условиях применяется азотная кислота концентрацией 45-60%.Чем выше концентрация применяемой азотной кислоты, тем меньше значение теплоты ее разбавления и тем больше тепловой эффект нейтрализации растворов азотной кислоты аммиаком.
Суммарное количество тепла Q ? ,выделяющегося в результате реакции нейтрализации растворов азотной кислоты газообразным аммиаком определяется уравнением:
Q ? =Q реак. -(q 1 -q 2) (1)
Возможны следующие принципиально различные схемы получения аммиачной селитры с использованием тепла нейтрализации:
- установки, работающие при атмосферном давлении (избыточное давление сокового пара 0,15-0,2 ат);
- установки с вакуум- испарителем;
- установки, работающие под давлением, с однократным использованием
тепла сокового пара;

Установки, работающие под давлением, с двукратным использованием тепла сокового пара (получение концентрированного плава).
Наибольшее распространение в России получила схема нейтрализации под атмосферным давлением, изображенная на рисунке 3.

Рис. 1.1 Схема нейтрализации азотной кислоты под атмосферным давлением:
1 – бак для азотной кислоты; 2 – подогреватель аммиака; 3 – сепаратор жидкого аммиака;4 – аппарат ИТН; 5 – ловушка-промыватель сокового пара; 6 – вакуумный выпарной аппарат I ступени; 7 – донейтрализатор.
В 1967-1970-х годах была разработана технологическая схема и выполнен проект крупнотоннажного агрегата АС-67 со среднесуточной мощностью 1400 т.
Особенностью агрегата АС-67 является размещение всего основного технологического оборудования (от стадии нейтрализации до стадии получения плава) на грануляционной башне каскадом, без промежуточных операций перекачивания растворов аммиачной селитры. Другая особенность агрегата АС-67 заключается в том, что воздух не отсасывают из башни, а нагнетают в башню снизу под решетку кипящего слоя одним мощным вентилятором, т. е. башня работает под подпором.
Размещение всего основного технологического оборудования на грануляционной башне, как отмечалось, упростило схему ввиду отказа от перекачивания концентрированных растворов селитры. В то же время такое решение привело к определённым усложнениям процессов строительства и

Эксплуатации агрегата:
- ствол башни несет большую нагрузку, вследствие чего он выполнен в железобетоне с внутреннй футеровкой кислотноупорным кирпичем, что приводит к значительным капитальным затратам, повышению трудоемкости и длительности строительства;
- надстройка с технологическим оборудованием расположена на большой высоте, поэтому должна быть полностью закрыта, отапливаемой и вентилируемой.
- монтаж оборудования может быть начат только после возведения башни, что удлиняет цикл строительно-монтажных работ;
- расположение оборудования на высоте вызывает повышение требований к работоспособности подъемно-транспортного оборудования (лифтов);
- эксплуатация башни под напором усложняет обслуживание аппарата охлаждения продукта в кипящем слое, встроенного в башню;

Применение встроенного охлаждающего аппарата приводит к увеличению расхода энергии на подачу воздуха в башню.
С целью устранения недостатков схемы АС-67 и повышения качества продукта в схеме АС-72 приняты следующие технические решения:
- предусмотрено повышение прочности гранул как результат воздействия трёх факторов: применения сульфатно-фосфатной добавки, получения более крупных гранул, регулирования темпа охлаждения гранул, для чего был применен секционированный выносной аппарат с кипящим слоем и раздельной подачей воздуха в каждую секцию;
- оборудование размещено внизу на отдельной этажерке; для перекачивания плава применен насос.
Технологическая схема производства селитры по схеме АС-72 состоит из тех же стадий, что и по схеме АС-67; дополнительной является стадия перекачивания высококонцентрированного плава аммиачной селитры на верх грануляционной башни.

Принципиальных отличий в технологическом процессе на стадиях нейтрализации и выпарки в схеме АС-72 по сравнению с АС-67 нет. Отличием является подогрев азотной кислоты в двух подогревателях индивидуально для каждого аппарата ИТН, что позволило установить автоматические регуляторы расхода на линии подачи азотной кислоты на подогрев. И еще одним характерным отличием является установка лишь одного более мощного донейтрализатора, вместо двух.
Рост требований к охране окружающей среды поставил в повестку дня существенное снижение выброса в атмосферу аэрозольных частиц аммиачной селитры и аммиака. Более высокая степень очистки этих выбросов – главная отличительная черта модернизированных агрегатов АС-72М.

В современных производствах аммиачной селитры удельные расходы сырья близки к теоретическим. Поэтому существенной разницы себестоимости продукта, получаемого в крупнотоннажных агрегатах АС-67, АС-72 и АС-72М, нет.
Различие технико- экономических показателей в зависимости от конкретных схем лежит главным образом в области расхода энергоресурсов: пара, электроэнергии, оборотной воды. Расход пара определяется исходной концентрацией азотной кислоты, степенью использования тепла сокового пара, получаемого на стадии нейтрализации.
Расход электроэнергии в производствах аммиачной селитры по абсолютным значениям не велик. Но он может колебаться в зависимости от применяемого способа охлаждения продукта (непосредственно в башне при полёте гранул,
в аппаратах с псевдоожиженным слоем, во вращающихся барабанах), от способов очистки воздуха, выбра
В промышленности в основном применяют агрегат АС-72,где в результате применения монодисперсных грануляторов обеспечен выровненный гранулометрический состав, снижено содержание мелких гранул, уменьшена скорость воздуха по сечению башни, т.е. созданы более благоприятные

Условия для уменьшения уноса пыли из башни и снижения нагрузки на промывной скруббер .

Список использованной литературы

1. Расчеты химико-технологических процессов. Под общей редакцией проф. Мухленова И.П. Л., «Химия», 1976. –304с.
2.http://www.xumuk.ru//
3.Клевке.В.А.,”Технология азотных удобрений”,М.,Госхимиздат, 1963г.
4.Общая химическая технология: Важнейшие химические производства/И.П.Мухленов.-4-е изд.-М.:Высш.шк.,1984.- 263с.
5.Основные процессы и аппараты химической технологии: Пособие по проектированию. Под ред.Ю.И.Дытнерского,2-е изд.,М.: Химия,1991.-496 с.
6.Миниович М. А. Производство аммиачной селитры. М. «Химия», 1974. – 240 с.

Заключение

В данной курсовой работе изучили производство аммиачной селитры и принципиальную технологическую схему, обосновали выбор основного и вспомогательного оборудования в производстве аммиачной селитры, рассчитали материальный и тепловой балансы стадии нейтрализации.
Рассмотрели физические, химические свойства аммиачной селитры. Так как аммиачная селитра обладает такими свойствами как слеживаемость и гигроскопичность необходимо принимать следующие меры, для уменьшения слеживаемости применять порошкообразные добавки, припудривающие частицы соли. Одни из добавок уменьшают активную поверхность частиц, другие обладают адсорбционными свойствами. Прибавлять к слеживающимся солям очень малые количества красителей, а также охлаждать аммиачную селитру перед упаковкой в тару. Чтобы уменьшить гигроскопичность необходимо селитру гранулировать. Гранулы имеют меньшую удельную поверхность, чем мелкокристаллическая соль, поэтому медленнее увлажняется.
Аммиачная селитра является наиболее важным и распространенным азотным удобрением которое применяется сельском хозяйстве. Поэтому необходимо соблюдать условия хранения аммиачной селитры и создавать новые технологические решения.

4.Выбор размеров контактного аппарата

Определяем объем аппарата использующего теплоту нейтрализации:

Время контактирования, час;

M- производительность аппарата,м 3 /час.

G=10000 кг/час=36000000 кг/сек.

Ам.селитры =1725 кг/м 3

M= G/ ? ам.селитры

M=36000000 кг/сек: 1725 кг/м 3 =20869,5 м 3 /сек

V= 1сек·20869, 5 м 3 /сек=20869,5 м 3

Государственное образовательное учреждение
высшего профессионального образования
«Кузбасский государственный технический университет»

Кафедра химической технологии твердого топлива и экологии

УТВЕРЖДАЮ
Дата

Зав. кафедрой_______________
(подпись)

Студенту

1. Тема проекта





5. Консультанты по проекту (с указанием относящихся к ним разделов проекта)

2. ______________________________ _____________________
Дата выдачи задания _____________
Руководитель ________________________
(подпись)
7. Основная литература и рекомендуемые материалы
______________________________ ______________________________ ______________________________ ______________________________ ______________________________ _________________
Задание принял к исполнению (дата) _________________

Федеральное агентство по образованию

Государственное образовательное учреждение
высшего профессионального образования
«Кузбасский государственный технический университет»

Кафедра химической технологии твердого топлива и экологии

УТВЕРЖДАЮ
Дата

Зав. кафедрой_______________
(подпись)
Задание по курсовому проектированию

Студенту

1. Тема проекта
______________________________ _____________________

Утверждена приказом по вузу от
2. Срок сдачи студентом законченного проекта
3. Исходные данные к проекту
______________________________ ______________________

4. Объем и содержание пояснительной записки (основных вопросов общей и специальной части) и графического материала
______________________________ ______________________________ ______________________________ ______________________________
5. Консультанты по проекту (с указанием относящихся к ним разделов проекта)
1. ______________________________ _____________________
2. ______________________________ _____________________ Дата выдачи задания _____________ Руководитель ________________________ (подпись) 7. Основная литература и рекомендуемые материалы ______________________________ ______________________________ ______________________________ ______________________________ ______________________________ _________________ Задание принял к исполнению (дата) _________________

Аммиачная селитра, или нитрат аммония, NH 4 NO 3 - кристаллическое вещество белого цвета, содержащее 35% азота в аммонийной и нитратной формах, обе формы азота легко усваиваются растениями. Гранулированную аммиачную селитру применяют в больших масштабах перед посевом и для всех видов подкормок. В меньших масштабах ее используют для производства взрывчатых веществ.

Аммиачная селитра хорошо растворяется в воде и обладает большой гигроскопичностью (способностью поглощать влагу из воздуха), что является причиной того, что гранулы удобрения расплываются, теряют свою кристаллическую форму, происходит слеживание удобрений - сыпучий материал превращается в твердую монолитную массу.

Принципиальная схема производства нитрата аммония

Для получения практически неслеживающейся аммиачной селитры применяют ряд технологических приемов. Эффективным средством уменьшения скорости поглощения влаги гигроскопичными солями является их гранулирование. Суммарная поверхность однородных гранул меньше поверхности такого же количества мелкокристаллической соли, поэтому гранулированные удобрения медленнее поглощают влагу из

В качестве аналогично действующих добавок применяют также фосфаты аммония, хлорид калия, нитрат магния. В основе процесса производства аммиачной селитры лежит гетерогенная реакция взаимодействия газообразного аммиака с раствором азотной кислоты:

NH 3 +HNO 3 = NH 4 NO 3 ; ΔН = -144.9кДж

Химическая реакция протекает с большой скоростью; в промышленном реакторе она лимитируется растворением газа в жидкости. Для уменьшения диффузионного торможения большое значение имеет перемешивание реагентов.

Технологический процесс производства аммиачной селитры включает кроме стадии нейтрализации азотной кислоты аммиаком также стадии упаривания раствора селитры, гранулирования плава, охлаждения гранул, обработки гранул поверхностно-активными веществами, упаковки, хранения и погрузки селитры, очистки газовых выбросов и сточных вод. На рис. 8.8 приведена схема современного крупнотоннажного агрегата по производству аммиачной селитры АС-72 мощностью 1360 т/сут. Исходная 58-60%-ная азотная кислота подогревается в подогревателе до 70 - 80°С соковым паром из аппарата ИТН 3 и подается на нейтрализацию. Перед аппаратами 3 к азотной кислоте добавляют фосфорную и серную кислоты в таких количествах, чтобы в готовом продукте содержалась 0,3-0,5% Р 2 О 5 и 0,05-0,2% суль- фата аммония. В агрегате установлены два аппарата ИТН, работающие параллельно. Кроме азотной кислоты в них подают газообразный аммиак, предварительно нагретый в подогревателе 2 паровым конденсатом до 120- 130°С. Количества подаваемых азотной кислоты и аммиака регули- руют таким образом, чтобы на выходе из аппарата ИТН раствор имел небольшой избыток кислоты (2-5 г/л), обеспечивающий полноту поглощения аммиака.



В нижней части аппарата происходит реакция нейтрализации при температуре 155-170°С; при этом получается концентрированный раствор, содержащий 91-92% NH 4 NO 3 . В верхней части аппарата водяные пары (так называемый соковый пар) отмываются от брызг аммиачной селитры и паров азотной кислоты. Часть теплоты сокового пара используется на подогрев азотной кислоты. Затем соковый пар направляют на очистку и выбрасывают в атмосферу.

Рис.8.8.Схема агрегата аммиачной селитры АС-72:

1 – подогреватель кислоты; 2 – подогреватель аммиака; 3 –аппараты ИТН; 4 – донейтрализатор; 5 –выпарной аппарат; 6 – напорный бак; 7,8 – грануляторы; 9,23 – вентиляторы; 10 – промывной скруббер; 11 – барабан; 12,14 – транспортеры; 13 –элеватор; 15 – аппарат кипящего слоя; 16 –грануляционная башня; 17 – сборник; 18, 20 – насосы; 19 – бак для плава; 21 –фильтр для плава; 22 – подогреватель воздуха.

Кислый раствор аммиачной селитры направляют в донейтрализатор 4; куда поступает аммиак, необходимый для взаимодействия с оставшейся азотной кислотой. Затем раствор подают в выпарной аппарат 5. Полученный плав, содержащий 99,7-99,8% селитры, при 175°С проходит фильтр 21 и центробежным погружным насосом 20 подается в напорный бак 6, а затем в прямоугольную металлическую грануляционную башню 16.

В верхней части башни расположены грануляторы 7 и 8, в нижнюю часть которых подают воздух, охлаждающий падающие сверху капли селитры. Во время падения капель селитры с высоты 50-55 м при обтекании их потоком воздуха образуются гранулы удобрения. Температура гранул на выходе из башни равна 90-110°С; горячие гранулы охлаждают в аппарате кипящего слоя 15. Это прямоугольный аппарат, имеющий три секции и снабженный решеткой с отверстиями. Под решетку вентиляторами подают воздух; при этом создается псевдоожиженный слой гранул селитры, поступающих по транспортеру из грануляционной башни. Воздух после охлаждения попадает в грануляционную башню. Гранулы аммиачной селитры транспортером 14 подают на обработку поверхностно-активными веществами во вращающийся барабан. Затем готовое удобрение транспортером 12 направляют на упаковку.



Воздух, выходящий из грануляционной башни, загрязнен частицами аммиачной селитры, а соковый пар из нейтрализатора и паровоздушная смесь из выпарного аппарата содержат непрореагировавший аммиак и азотную кислоту, а также частицы унесенной аммиачной селитры.

Для очистки этих потоков в верхней части грануляционной башни расположены шесть параллельно работающих промывных скрубберов тарельчатого типа 10, орошаемых 20-30%-ным раствором аммиачной селитры, которая подается насосом 18 из сборника 17. Часть этого раствора отводится в нейтрализатор ИТН для промывки сокового пара, а затем подмешивается к раствору селитры, и, следовательно, используется для выработкой продукции. Очищенный воздух отсасывается из грануляционной башни вентилятором 9 и выбрасывается в атмосферу.

Производство карбамида

Карбамид (мочевина) среди азотных удобрений занимает второе место по объему производства после аммиачной селитры. Рост производства карбамида обусловлен широкой сферой его применения в сельском хозяйстве. Он обладает большей устойчивостью к выщелачиванию по сравнению с другими азотными удобрениями, т. е. менее подвержен вымыванию из почвы, менее гигроскопичен, может применяться не только как удобрение, но и в качестве добавки к корму крупного рогатого скота. Карбамид, кроме того, широко используется для получения сложных удобрений, удобрений с регулируемым сроком действия, а также для получения пластмасс, клеев, лаков и покрытий. Карбамид CO(NH 2) 2 - белое кристаллическое вещество, содержащее 46,6% азота. Его получение основано на реакции взаимодействия аммиака с диоксидом углерода:

2NH 3 + CO 2 ↔ CO(NH 2) 2 + H 2 O; ΔН = -110.1 кДж (1)

Таким образом, сырьем для производства карбамида служат аммиак и диоксид углерода, получаемый в качестве побочного продукта при производстве технологического газа для синтеза аммиака. Поэтому производство карбамида на химических заводах обычно комбинируют с производством аммиака. Реакция (I) - суммарная; она протекает в две стадии. На первой стадии происходит синтез карбамата:

2NH 3 (г) + CO2(г) ↔ NH 2 СООNH 4 (ж); ΔН = –125,6кДж (2)

На второй стадии протекает эндотермический процесс отщепления воды от молекул карбамата, в результате которого и происходит образование карбамида:

NH 2 СООNH 4 (ж) ↔ CO(NH 2) 2 (ж) + H2O (ж) ; ΔН =15,5кДж (3) Реакция образования карбамата аммония - обратимая экзотермическая реакция, протекающая с уменьшением объема. Для смещения равновесия в сторону продукта ее необходимо проводить при повышенном давлении. Для того чтобы процесс протекал с достаточно высокой скоростью, необходимы повышенные температуры. Повышение давления компенсирует отрицательное влияние высоких температур на смещение равновесия реакции в обратную сторону. На практике синтез карбамида проводят при температурах 150-190°С и давлении 15-20 МПа. В этих условиях реакция протекает с высокой скоростью и практически до конца. Разложение карбамата аммония - обратимая эндотермическая реакция, интенсивно протекающая в жидкой фазе. Чтобы в реакторе не происходило кристаллизации твердых продуктов, процесс необходимо вести при температурах не ниже 98°С [эвтектическая точка для системы CO(NH 2) 2 - NH 2 COONH 4 ]. Более высокие температуры смещают равновесие реакции вправо и повышают ее скорость. Максимальная степень превращения карбамата в карбамид достигается при 220°С. Для смещения равновесия этой реакции вводят также избыток аммиака, который, связывая реакционную воду, удаляет ее из сферы реакции. Однако добиться полного превращения карбамата в карбамид все же не удается. Реакционная смесь помимо продуктов реакции (карбамида и воды) содержит также карбамат аммония и продукты его разложения - аммиак и СО 2 .

Для полного использования исходного сырья необходимо либо предусмотреть возвращение непрореагировавших аммиака и диоксида углерода, а также углеаммонийных солей (промежуточных продуктов реакции) в колонну синтеза, т. е. создание рецикла, либо отделение карбамида от реакционной смеси и направление оставшихся реагентов на другие производства, например на производство аммиачной селитры, т.е. проведение процесса по открытой схеме.

В последнем случае плав, выходящий из колонны синтеза, дросселируют до атмосферного давления; равновесие реакции (2) при температурах 140-150°С практически полностью смещается влево и весь оставшийся карбамат разлагается. В жидкой фазе остается водный раствор карбамида, который упаривают и направляют на грануляцию. Рецикл образовавшихся газообразных аммиака и диоксида углерода в колонну синтеза потребовал бы их сжатия в компрессоре до давления синтеза карбамида. Это сопряжено с техническими трудностями, связанными с возможностью образования карбамата при низких температурах и высоком давлении уже в компрессоре и забивки машин и тру- бопроводов твердыми частицами.

Поэтому в закрытых схемах (схемах с рециркуляцией) обычно применяют только жидкостной рецикл. Существует ряд технологических схем с жидкостным рециклом. К числу наиболее прогрессивных принадлежат так называемые схемы с полным жидкостным рециклом и с применением стриппинг-процесса. Стриппинг (отдувка) заключается в том, что разложение карбамата аммония в плаве после колонны синтеза ведут при давлении, близком к давлению на стадии синтеза, продувкой плава сжатым СО 2 или сжатым аммиаком. В этих условиях диссоциация карбамата аммония происходит за счет того, что при продувке плава диоксидом углерода резко снижается парциальное давление аммиака и происходит смещение равновесия реакции (2) влево. Такой процесс отличается использованием теплоты реакции образования карбамата и более низким расходом энергии.

На рис.8.9. приведена упрощенная схема крупнотоннажного агрегата синтеза карбамида с жидкостным рециклом и применением стриппинг-процесса. В ней можно выделить узел высокого давления, узел низкого давления и систему грануляции. Водный раствор карбамата аммония и углеаммонийных солей, а также аммиак и диоксид углерода поступают в нижнюю часть колонны синтеза 1 из конденсатора высокого давления 4. В колонне синтеза при температуре 170-190°С и давлении 13-15 МПа заканчивается образование карбамата и протекает реакция синтеза карбамида. Расход реагентов подбирают таким образом, чтобы в реакторе молярное отношение NH 3: СО 2 составляло 2,8-2,9. Жидкая реакционная смесь (плав) из колонны синтеза карбамида поступает в отдувочную колонну 5, где стекает по трубкам вниз. Противотоком к плаву подают сжатый в компрессоре до давления 13- 15 МПа диоксид углерода, к которому для образования пассивирующей пленки и уменьшения коррозии оборудования добавлен воздух в количестве, обеспечивающем в смеси концентрацию кислорода 0,5-0,8%. Отдувочная колонна обогревается водяным паром. Парогазовая смесь из колонны 5, содержащая свежий диоксид углерода, поступает в конденсатор высокого давления 4. В него же вводят жидкий аммиак. Он одновременно служит рабочим потоком в инжекторе 3, подающем в конденсатор раствор углеаммонийных солей из скруббера 2 и при необходимости часть

Рис.8.9. Упрощенная технологическая схема получения карбамида с полным жидкостным рециклом и применением процесса стриппинга:

1 – колонна синтеза карбамида; 2 – скруббер высокого давления; 3 –инжектор; 4 – карбаматный конденсатор высокоого давления; 5 –отдувочная колонна; 6 – насосы; 7 –конденсатор низкого давления; 8 – ректификационная колонна низкого давления; 9 –подогреватель; 10 – сборник; 11 –выпарной аппарат; 12 – грануляционная башня.

плава из колонны синтеза. В конденсаторе образуется карбамат. Выделяющуюся при реакции теплоту используют для получения водяного пара.

Из верхней части колонны синтеза непрерывно выходят непрореагировавшие газы, поступающие в скруббер высокого давления 2, в котором большая часть их конденсируется за счет водного охлаждения, образуя водный раствор карбамата и углеаммонийных солей. Водный раствор карбамида, выходящий из отдувочной колонны 5, содержит 4-5% карбамата. Для окончательного его разложения раствор дросселируют до давления 0,3-0,6 МПа и затем направляют в верхнюю часть ректификационной колонны 8. Жидкая фаза стекает в колонне вниз по насадке противотоком к парогазовой смеси, поднимающейся снизу вверх; из верхней части колонны выходят NH 3 , CO 2 и водяные пары. Водяные пары конденсируются в конденсаторе низкого давления 7, при этом растворяется основная часть аммиака и диоксида углерода. Полученный раствор направляют в скруббер 2. Окончательная очистка газов, выбрасываемых в атмосферу, производится абсорбционными методами (на схеме не показана).

70%-ный водный раствор карбамида, выходящий из нижней части ректификационной колонны 8, отделяют от парогазовой смеси и направляют после снижения давления до атмосферного сначала на выпарку, а затем на грануляцию. Перед распылением плава в грануляционной башне 12 к нему добавляют кондиционирующие добавки, например мочевиноформальдегидную смолу, чтобы получить неслеживающееся удобрение, не портящееся при хранении.

Принципиальная схема с полным рециклом