Организация пространства. Советы и идеи. Сад и участок

Что такое стехиометрический коэффициент. Стехиометрия

При составлении уравнений окислительно-восстановительных реакций необходимо соблюдать два следующих важных правила:

Правило 1: В любом ионном уравнении должно соблюдаться сохранение зарядов. Это означает, что сумма всех зарядов в левой части уравнения («слева») должна совпадать с суммой всех зарядов в правой части уравнения («справа»). Это правило относится к любым ионным уравнениям, как для полных реакций, так и для полуреакций.

Заряды слева справа

Правило 2: Число электронов, теряемых в окислительной полуреакции, должно быть равно числу электронов, приобретаемых в восстановительной полуреакции. Например, в первом примере, приведенном в начале данного раздела (реакция между железом и гидратированными ионами двухвалентной меди), число электронов, теряемых в окислительной полуреакции, равно двум:

Следовательно, число электронов, приобретаемых в восстановительной полуреакции, тоже должно быть равно двум:

Для составления уравнения полной окислительно-восстановительной рекции из уравнений двух полуреакций может использоваться следующая процедура:

1. Уравнения каждой из двух полуреакций балансируются порознь, причем для выполнения указанного выше правила 1 к левой или правой части каждого уравнения добавляется соответствующее число электронов.

2. Уравнения обеих полуреакций балансируются по отношению друг к другу, так чтобы число электронов, теряемых в одной реакции, стало равно числу электронов, приобретаемых в другой полуреакции, как этого требует правило 2.

3. Уравнения обеих полуреакций суммируют для получения полного уравнения окислительно-восстановительной реакции. Например, суммируя уравнения двух приведенных выше полуреакций и удаляя из левой и правой части полученного уравнения

равное число электронов, находим

Сбалансируем уравнения приведенных ниже полуреакций и составим уравнение окислительно-восстановительной реакции окисления водного раствора какой-либо соли двухвалентного железа в соль трехвалентного железа с помощью кислого раствора калия.

Стадия 1. Сбалансируем сначала порознь уравнение каждой из двух полуреакций. Для уравнения (5) имеем

Чтобы сбалансировать обе стороны этого уравнения, необходимо добавить к его левой части пять электронов, либо вычесть столько же электронов из правой части. После этого получим

Это позволяет записать следующее сбалансированное уравнение:

Поскольку к левой части уравнения пришлось добавлять электроны, оно описывает восстановительную полуреакцию.

Для уравнения (6) можно записать

Чтобы сбалансировать это уравнение, можно добавить один электрон к его правой части. Тогда

Стехиометрия - количественные соотношения между вступающими в реакцию веществами.

Если реагенты вступают в химическое взаимодействие в строго определенных количествах, а в результате реакции образуются вещества, количество которых можно расчитать, то такие реакции называются стехиометрическими .

Законы стехиометрии:

Коэффициенты в химических уравнениях перед формулами химических соединений называются стехиометрическими .

Все расчёты по химическим уравнениям основаны на использовании стехиометрических коэффициентов и связаны с нахождением количеств вещества (чисел молей).

Количество вещества в уравнении реакции (число молей) = коэффициенту перед соответствующей молекулой.

N A =6,02×10 23 моль -1 .

η - отношение реальной массы продукта m p к теоретически возможной m т, выраженное в долях единицы или в процентах.

Если в условии выход продуктов реакции не указан, то в расчетах его принимают равным 100% (количественный выход).

Схема расчёта по уравнениям химических реакций:

  1. Составить уравнение химической реакции.
  2. Над химическими формулами веществ написать известные и неизвестные величины с единицами измерения.
  3. Под химическими формулами веществ с известными и неизвестными записать соответствующие значения этих величин, найденные по уравнению реакций.
  4. Составить и решить пропорцию.

Пример. Вычислить массу и количество вещества оксида магния, образовавшегося при полном сгорании 24 г магния.

Дано:

m (Mg ) = 24 г

Найти:

ν ( MgO )

m ( MgO )

Решение:

1. Составим уравнение химической реакции:

2Mg + O 2 = 2MgO.

2. Под формулами веществ укажем количество вещества (число молей), которое соответствует стехиометрическим коэффициентам:

2Mg + O 2 = 2MgO

2 моль 2 моль

3. Определим молярную массу магния:

Относительная атомная масса магния Ar (Mg) = 24.

Т.к. значение молярной массы равно относительной атомной или молекулярной массе, то M (Mg) = 24 г/моль.

4. По массе вещества, заданной в условии, вычислим количество вещества:

5. Над химической формулой оксида магния MgO , масса которого неизвестна, ставим x моль , над формулой магния Mg пишем его молярную массу:

1 моль x моль

2Mg + O 2 = 2MgO

2 моль 2 моль

По правилам решения пропорции:

Количество оксида магния ν (MgO) = 1 моль.

7. Вычислим молярную массу оксида магния:

М (Mg) =24 г/моль,

М (О) =16 г/моль.

M (MgO) = 24 + 16 = 40 г/моль.

Рассчитываем массу оксида магния:

m (MgO) = ν (MgO) ×M (MgO) = 1 моль×40 г/моль = 40 г.

Ответ: ν (MgO) = 1 моль; m (MgO) = 40 г.

При составлении уравнения окислительно-восстановительной реакции необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов. Применяются в основном два метода составления уравнений окислительно-восстановительных реакций:
1) электронного баланса – основан на определении общего количества электронов, перемещающихся от восстановителя к окислителю;
2) ионно-электронного баланса – предусматривает раздельное составление уравнений для процесса окисления и восстановления с последующим суммированием их в общее ионное уравнение-метод полуреакции. В этом методе следует найти не только коэффициенты для восстановителя и окислителя, но и для молекул среды. В зависимости от характера среды число электронов, принимаемых окислителем или теряемых восстановителем, может изменяться.
1) Электронный баланс - метод нахождения коэффициентов в уравнениях окислительно-восстановительных реакций, в котором рассматривается обмен электронами между атомами элементов, изменяющих свою степень окисления. Число электронов, отданное восстановителем равно числу электронов, получаемых окислителем.

Уравнение составляется в несколько стадий:

1. Записывают схему реакции.

KMnO 4 + HCl → KCl + MnCl 2 + Cl 2 + H 2 O

2. Проставляют степени окисления над знаками элементов, которые меняются.

KMn +7 O 4 + HCl -1 → KCl + Mn +2 Cl 2 + Cl 2 0 + H 2 O

3. Выделяют элементы, изменяющие степени окисления и определяют число электронов, приобретенных окислителем и отдаваемых восстановителем.

Mn +7 + 5ē = Mn +2

2Cl -1 - 2ē = Cl 2 0

4. Уравнивают число приобретенных и отдаваемых электронов, устанавливая тем самым коэффициенты для соединений, в которых присутствуют элементы, изменяющие степень окисления.

Mn +7 + 5ē = Mn +2 2

2Cl -1 - 2ē = Cl 2 0 5

––––––––––––––––––––––––

2Mn +7 + 10Cl -1 = 2Mn +2 + 5Cl 2 0

5. Подбирают коэффициенты для всех остальных участников реакции. При этом 10 молекул HCl участвуют в восстановительном процессе, а 6 в - ионообменном (связывание ионов калия и марганца).

2KMn +7 O 4 + 16HCl -1 = 2KCl + 2Mn +2 Cl 2 + 5Cl 2 0 + 8H 2 O

2) Метод ионно-электронного баланса.

1. Записывают схему реакции.

K 2 SO 3 + KMnO 4 + H 2 SO 4 → K 2 SO 4 + MnSO 4 + H 2 O

2. Записывают схемы полуреакций, с использованием реально присутствующих частиц (молекул и ионов) в растворе. При этом подводим материальный баланс, т.е. количество атомов элементов участвующих в полуреакции в левой части должно быть равно их количеству в правой. Окисленная и восстановленная формы окислителя и восстановителя часто отличаются по содержанию кислорода (сравните Cr 2 O 7 2− и Cr 3+). Поэтому при составлении уравнений полуреакций методом электронно-ионного баланса в них включают пары Н + /Н 2 О (для кислотной среды) и ОН − /Н 2 О (для щелочной среды). Если при переходе от одной формы к другой исходная форма (обычно − окисленная ) теряет свои оксид-ионы (ниже показаны в квадратных скобках), то последние, так как они не существуют в свободном виде, должны быть в кислотной среде соединены с катионами водорода, а в щелочной среде − с молекулами воды, что приводит к образованию молекул воды (в кислотной среде) и гидроксид-ионов (в щелочной среде):

кислотная среда + 2H + = H 2 O пример: Cr 2 O 7 2− + 14H + = 2Cr 3+ + 7H 2 O
щелочная среда + H 2 О = 2 ОН − пример: MnO 4 - +2H 2 O = MnO 2 + 4ОH -

Недостаток кислорода в исходной форме (чаще − в восстановленной) по сравнению с конечной формой компенсируется добавлением молекул воды кислотной среде) или гидроксид-ионов щелочной среде):

кислотная среда H 2 O = + 2H + пример: SO 3 2- + H 2 O = SO 4 2- + 2H +
щелочная среда 2 ОН − = + H 2 О пример: SO 3 2− + 2OH − = SO 4 2− + H 2 O

MnO 4 - + 8H + → Mn 2+ + 4H 2 O восстановление

SO 3 2- + H 2 O → SO 4 2- + 2H + окисление

3. Подводим электронный баланс, следуя необходимости равенства суммарного заряда в правой и левой частях уравнений полуреакций.

В приведенном примере в правой части уравнения полуреакции восстановления суммарный заряд ионов равен +7, в левой - +2, значит в правой части необходимо добавить пять электронов:

MnO 4 - + 8H + + 5ē → Mn 2+ + 4H 2 O

В уравнении полуреакции окисления суммарный заряд в правой части равен -2, в левой 0, значит в правой части необходимо вычесть два электрона:

SO 3 2- + H 2 O – 2ē → SO 4 2- + 2H +

Таким образом, в обоих уравнениях осуществлен ионно-электронный баланс и можно в них вместо стрелок поставить знаки равенства:

MnO 4 - + 8H + + 5ē = Mn 2+ + 4H 2 O

SO 3 2- + H 2 O – 2ē = SO 4 2- + 2H +

4. Следуя правилу о необходимости равенства количества электронов принятых окислителем и отданных восстановителем, находим наименьшее общее кратное для количеств электронов в обоих уравнениях (2∙5 = 10).

5. Умножаем на коэффициенты (2,5) и суммируем оба уравнения сложив левые и правые части обоих уравнений.

MnO 4 - + 8H + + 5ē = Mn 2+ + 4H 2 O 2

SO 3 2- + H 2 O – 2ē = SO 4 2- + 2H + 5

–––––––––––––––––––––––––––––––––––––––––––––––––––

2MnO 4 - + 16H + + 5SO 3 2- + 5H 2 O = 2Mn 2+ + 8H 2 O + 5SO 4 2- + 10H +

2MnO 4 - + 6H + + 5SO 3 2- = 2Mn 2+ + 3H 2 O + 5SO 4 2-

или в молекулярной форме:

5K 2 SO 3 + 2KMnO 4 + 3H 2 SO 4 = 6K 2 SO 4 + 2MnSO 4 + 3H 2 O

В этом методе рассматривают переход электронов от одних атомов или ионов к другим с учетом характера среды (кислая, щелочная или нейтральная), в которой протекает реакция. В кислой среде в уравнениях полуреакций для уравнивания числа атомов водорода и кислорода должны использоваться ионы водорода Н + и молекулы воды, в основной – гидроксид-ионы ОН - и молекулы воды. Соответственно и в получаемых продуктах в правой части электронно-ионного уравнения будут находиться ионы водорода (а не гидроксид-ионы) и молекулы воды (кислая среда) или гидроксид-ионы и молекулы воды (щелочная среда). Так, например, уравнение полуреакции восстановления перманганат-иона в кислой среде нельзя составлять с наличием гидроксид-ионов в правой части:

MnO 4 - + 4H 2 O + 5ē = Mn 2+ + 8ОH - .

Правильно : MnO 4 - + 8H + + 5ē = Mn 2+ + 4H 2 O

Т. е. при написании электронно-ионных уравнений нужно исходить из состава ионов, действительно имеющихся в растворе. Кроме того, как и при составлении сокращенных ионных уравнений, вещества малодиссоциирующие, плохо растворимые или выделяющиеся в виде газа следует писать в молекулярной форме.

Составление уравнений окислительно-восстановительных реакций с помощью метода полуреакций приводит к тому результату, что и метод электронного баланса.

Сопоставим оба метода. Достоинство метода полуреакций по сравнению с методом электронного баланса в том. что в нем применяются не гипотетические ионы, а реально существующие.

При использовании метода полуреакций не нужно знать степень окисления атомов. Написание отдельных ионных уравнений полуреакций необходимо для понимания химических процессов в гальваническом элементе и при электролизе. При этом методе видна роль среды как активного участника всего процесса. Наконец, при использовании метода полуреакций не нужно знать все получающиеся вещества, они появляются в уравнении реакции при выводе его. Поэтому методу полуреакций следует отдать предпочтение и применять его при составлении уравнений всех окислительно-восстановительных реакций, протекающих в водных растворах

В этом методе сравнивают степени окисления атомов в исходных и конечных веществах, руководствуясь правилом: число электронов, отданных восстановителем, должно равняться числу электронов, присоединенных окислителем. Для составления уравнения надо знать формулы реагирующих веществ и продуктов реакции. Последние определяются либо опытным путем, либо на основе известных свойств элементов.

Метод ионно-электронного баланса более универсален по сравнению с методом электронного баланса и имеет неоспоримое преимущество при подборе коэффициентов во многих окислительно-восстановительных реакциях, в частности, с участием органических соединений, в которых даже процедура определения степеней окисления является очень сложной.

Рассмотрим, например, процесс окисления этилена, происходящий при пропускании его через водный раствор перманганата калия. В результате этилен окисляется до этиленгликоля НО-CH 2 -СН 2 -ОН, а перманганат восстанавливается до оксида марганца (IV), кроме того, как будет очевидно из итогового уравнения баланса, справа образуется также гидроксид калия:

KMnO 4 + C 2 H 4 + Н 2 О → C 2 H 6 O 2 + MnO 2 + KOH

Уравнение полуреакций восстановления и окисления:

MnO 4 - +2H 2 O + 3е = MnO 2 + 4ОH - 2 восстановление

С 2 Н 4 + 2ОН - - 2е = C 2 H 6 O 2 3 окисление

Суммируем оба уравнения, вычитаем имеющиеся в левой и правой части гидроксид-ионы.

Получаем итоговое уравнение:

2KMnO 4 + 3C 2 H 4 + 4Н 2 О → 3C 2 H 6 O 2 + 2MnO 2 + 2KOH

При использовании метода ионно-электронного баланса для определения коэффициентов в реакциях с участием органических соединений удобно считать степени окисления атомов водорода равными +1, кислорода -2, а углерода высчитать, используя баланс положительных и отрицательных зарядов в молекуле (ионе). Так, в молекуле этилена, суммарный заряд равен нулю:

4 ∙ (+1) + 2 ∙ Х = 0,

значит степень окисления двух атомов углерода – (-4), а одного (Х) – (-2).

Аналогично в молекуле этиленгликоля C 2 H 6 O 2 находим степень окисления углерода (Х):

2 ∙ Х + 2 ∙ (-2) + 6 ∙ (+1) = 0, Х = -1

В некоторых молекулах органических соединений такой расчет приводит к дробному значению степени окисления углерода, например, у молекулы ацетона (С 3 Н 6 О) она равна -4/3. В электронном уравнении оценивается общий заряд атомов углерода. В молекуле ацетона он равен -4.


Похожая информация.


Составлении уравнения окислительно-восстановительной реакции (ОВР) необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов. Стехиометрические коэффициенты ОВР подбирают, используя либо метод электронного баланса, либо метод электронно-ионного баланса (последний называют также методом полуреакций). Рассмотрим несколько примеров. В качестве примера составления уравнений ОВР и подбора стехиометрических коэффициентов проанализируем процесс окисления дисульфида железа (II) (пирита) концентрированной азотной кислотой: В первую очередь определим возможные продукты реакции. Азотная кислота - сильный окислитель, поэтому сульфид-ион может быть окислен либо до максимальной степени окисления S (H2S04), либо до S (SO2), a Fe - до Fe, при этом HN03 может восстанавливаться до N0 или N02 (набор конкретных продуктов определяется концентрациями реагентов, температурой и т. п.). Выберем следующий возможный вариант: В левой или правой части уравнения будет находиться Н20, мы пока не знаем. Известно два основных метода подбора коэффициентов. Применим сначала метод электронно-ионного баланса. Суть этого метода в двух очень простых и очень важных утверждениях. Во-первых, в этом методе рассматривают переход электронов от одних частиц к другим с обязательным учетом характера среды (кислая, щелочная или нейтральная). Во-вторых, при составлении уравнения электронно-ионного баланса записываются только те частицы, которые реально существуют в ходе проте- кания данной ОВР - в виде ионов записываются только реально существующие катионы или анноны; вещества малодиосоцииру-ющне, нерастворимые или выделяющиеся в виде газа пишут в молекулярной форме. При составлении уравнения процессов окисления и восстановления для уравнивания числа атомов водорода и кислорода вводят (в зависимости от среды) или молекулы воды и ионы водорода (если среда кислая), или молекулы воды и гидро-ксид-ионы (если среда щелочная). Рассмотрим для нашего случая полуреакцию окисления. Молекулы FeS2 (плохо растворимого вещества) превращаются в ионы Fe3+ (нитрат железа (П1) полностью диссоциирует на ионы) и сульфат-ионы S042" (диссоциация H2SO4): Рассмотрим теперь полуреакцию восстановления нитрат-иона: Чтобы уравнять кислород, в правую часть добавляем 2 молекулы воды, а в левую - 4 иона Н+: Для уравнивания заряда к левой части (заряд +3) добавим 3 электрона: Окончательно имеем: Сократив обе части на 16Н+ и 8Н20, получим итоговое, сокращенное ионное уравнение окислительно-восстановительной реакции: Добавив в обе части уравнения соответствующее число ионов NOJ нН+, находим молекулярное уравнение реакции: Обратите внимание, что для определения числа отданных и принятых электронов нам ни разу не пришлось определять степень окисления элементов. Кроме того, мы учли влияние среды и «автоматически» определили, что Н20 находится в правой части уравнения. Несомненно то, что этот метод имеет большой химический смысл. Метод эмпрооийго баланса. Суть метода нахождения стехи-ометряческнх коэффициентов в уравнениях ОВР в обязательном нахождении степеней окисления атомов элементов, участвующих в ОВР. Используя данный подход, снова уравняем реакцию (11.1) (выше мы применила к этой реакции метод полуреакций). Процесс восстановления описывается просто: Сложнее составить схему окисления, поскольку окисляются сразу два элемента - Fe и S. Можно приписать железу степень окисления +2, сере - 1 и учесть, что на один атом Fe приходится два атома S: Можно, однако, обойтись без определения степеней окисления и записать схему, напоминающую схему (11.2): Правая часть имеет заряд +15, левая - 0, поэтому FeS2 должен отдать 15 электронов. Записываем общий баланс: С полученным уравнением баланса нужно еще немного «разобраться» - из него видно, что 5 молекул HN03 идут на окисление FeS2 и еще 3 молекулы HNO, необходимы для образования Fe(N03)j: Чтобы уравнять водород и кислород, в правую часть нужно добавить 2 молекулы Н20: Метод электронно-ионного баланса более универсален по сравнению с методом электронного баланса и имеет неоспоримое преимущество при подборе коэффициентов во многих ОВР, в частности, с участием органических соединений, в которых даже сама процедура определения степеней окисления является очень сложной. - Рассмотрим, например, процесс окисления этилена, происходящий при пропускании его через водный раствор перманганата калия. В результате этилен окисляется до этиленгликоля НО - СН2 - СН2 - ОН, а перманганат восстанавливается до оксида марганца (TV), кроме того, как будет очевидно из итогового уравнения баланса, справа образуется также гидроксид калия: После проведения необходимых сокращений подобных членов записываем уравнение в окончательном молекулярном вид* Влияние среды ца характер протекания ОВР.Разобранные примеры (11.1) - (11.4) наглядно иллюстрируют «технику» использования метода электронно-ионного баланса в случае йротё-кания ОВР в кислой или щелочной среде. Характер средь!"влияет на протекание той или иной ОВР; чтобы «прочувствовать» это влияние, рассмотрим поведение одного и того окислителя (КМп04) в разных средах. . Наибольшую окислительную активность ион МпО^ проявляет вткислей среде, восстаиилифаясъ до мц меньшую - в нейтральной, восстанавливаясь до Mn+4(Mn0j), и минимальную - в силыгощеяочной, в которой восстагШаияаапся до (мвнганат-нОн Мп042"). Объясняется это следу- ющим образом. Кислоты оря диссоциации образуют ионы гящюкйопяж ffjO+, которые сально поляризуют4" ионы МоОГ Послабляют связи марганца о кислородом (способствуя тем самим усилению дейст»ия восстановителя).. В нейтральной среде поляризующее действие молекул воды значительно c-aafep. bjto иная донов гидроксоння Н30+, аозтом>" ионы МпО; поляризуются гораздо меньше. В силь-но щелочной среде гидр оксид-ионы «сколько даже упрочняют связь Мп - О, вследствие чего эффективность действия восстановителя уменьшается и МпО^ принимает только один электрон. Пример поведения перманганата калия в нейтральней среде представлен реакцией (11.4). Приведем также по одному примеру реакций с участием КМпОА в кислой и щелочной средах